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CAPITULO 5

Resultados

Results

DOI: htips://doi.org/10.71112/23nxem35

Resumen

Este capitulo presenta los resultados y analisis de la investigacion sobre la relacion entre la
productividad educativa y los algoritmos de aprendizaje automatico. El analisis descriptivo
detalla las percepciones de los 90 estudiantes encuestados sobre dimensiones como aptitud,
instruccion, medio ambiente y aprendizaje. El analisis inferencial, mediante la prueba Rho de
Spearman, revela una correlacion positiva muy alta (0.940) entre ambas variables,
confirmando todas las hipétesis especificas. Se concluye que los algoritmos (Decision Trees,
Random Forest, Naive Bayes) son predictores efectivos de la productividad educativa,
validando estudios previos.

Palabras clave: Resultados, Correlacion, Rho de Spearman, Anélisis Inferencial,

Productividad Educativa, Aprendizaje Automaético.

Abstract

This chapter presents the results and analysis of the research on the relationship between
educational productivity and machine learning algorithms. The descriptive analysis details the
perceptions of the 90 surveyed students regarding dimensions such as aptitude, instruction,
environment, and learning. The inferential analysis, using Spearman's Rho test, reveals a very
high positive correlation (0.940) between both variables, confirming all specific hypotheses. It
is concluded that the algorithms (Decision Trees, Random Forest, Naive Bayes) are effective
predictors of educational productivity, validating previous studies.

Keywords: Results, Correlation, Spearman's Rho, Inferential Analysis, Educational

Productivity, Machine Learning.

Analisis descriptivo

Luego de la aplicacién de la herramienta de recolecciéon de datos, se realiz6 el procesamiento
necesario para analizar los datos. En este punto, se analizaron internamente todos los
indicadores suministrados por la EPISI de la (UNAM.
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Descripcion de encuestados
Tabla 2

Totalidad de encuestados por genero

) . Porcentaje  Porcentaje
Frecuencia Porcentaje

valido acumulado
Masculino 67 74.4 74.4 74.4
Valido Femenino 23 25.6 25.6 100.0
Total 90 100.0 100.0

Nota: En la tabla podemos observar la distribucion de encuestados por frecuencia de
género, de ellos 67 son Masculinos y 23 Femeninos que representan el 74.4% y 23%
respectivamente en la presente investigacion.

Figura 6

Encuestados segin genero
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Nota: La figura describe porcentualmente la muestra de representativa de los alumnos de

la EPISI de la UNAM segun genero considerado en la presente investigacion.

Variable 1: productividad educativa
Tabla 3

Pregunta 1. Utilizo los recursos académicos disponibles para mis conocimientos

Porcentaje Porcentaje
Frecuencia Porcentaje valido acumulado
Nunca 6 6,7 6,7 6,7
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Véali  Rara Vez 25 27,8 27,8 34,4

do Algunas Veces 26 28,9 28,9 63,3
Casi Siempre 25 27,8 27,8 91,1
Siempre 8 8,9 8,9 100,0
Total 90 100,0 100,0

Nota: Elaboracion propia a partir de SPSS version 26.

Figura 7
Pregunta 1. Utilizo los recursos académicos disponibles para mis conocimientos
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Nota: Distribucién porcentual de la pregunta 1.

Interpretacion:

De acuerdo a la pregunta 1, acerca del uso de los recursos académicos disponibles para sus
conocimientos podemos mencionar que 28.9% (26 encuestados) mencionan algunas veces,
27.8% (25 encuestados) mencionan casi siempre y rara vez, 8.9% (8 encuestado) mencionan
siempre y 6.7% (6 encuestados) mencionan no utilizan.

Tabla 4

Pregunta 2. Planifico mis estudios académicos en la universidad

) ) Porcentaje =~ Porcentaje
Frecuencia Porcentaje

valido acumulado
Vélido Nunca 6 6,7 6,7 6,7
Rara Vez 29 32,2 32,2 38,9
Algunas Veces 18 20,0 20,0 58,9
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Casi Siempre 29 32,2 32,2 91,1
Siempre 8 8,9 8,9 100,0
Total 90 100,0 100,0

Nota: Elaboracion propia a partir de SPSS version 26.

Figura 8
Pregunta 2. Planifico mis estudios académicos en la universidad
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Nota: Distribucion porcentual de la pregunta 2.

Interpretacién:
De acuerdo a la pregunta 2, acerca de la planificaciéon de estudios en la universidad podemos

mencionar que 32.2% (29 encuestados) mencionan rara vez y casi siempre, el 20% (18
encuestados) mencionan algunas veces, el 8.9% (8 encuestados) mencionan siempre y 6.7% (6

encuestados) mencionan nunca.

Tabla 5
Pregunta 3: Los docentes felicitan mis esfuerzos académicos

Porcentaje  Porcentaje

Frecuencia Porcentaje

valido acumulado
Valido  Nunca 2 2,2 2,2 2,2
Rara Vez 11 12,2 12,2 14,4
Algunas Veces 26 28,9 28,9 43,3
Casi Siempre 40 44,4 44,4 87,8
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Siempre 11 12,2 12,2 100,0

Total 90 100,0 100,0

Nota: Elaboracion propia a partir de SPSS version 26.

Figura 9
Pregunta 3: Los docentes felicitan mis esfuerzos académicos
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Nota: Distribucion porcentual de la pregunta 3.

Interpretacion:

De acuerdo a la pregunta 3, referente al elogio establecido por los docentes al esfuerzo
académico podemos mencionar que 44.4% (40 encuestados) mencionan casi siempre, el 28.9%

(26 encuestados) mencionan algunas veces, mientras que el 12.2% (11 encuestados) mencionan

rara vez y siempre y 2.2% (2 encuestados) mencionan nunca.
Tabla 6

Pregunta 4: Comprendo las sesiones de aprendizaje

) . Porcentaje Porcentaje
Frecuencia Porcentaje

valido acumulado
Valido Nunca 2 2,2 2,2 2,2
Rara Vez 10 11,1 11,1 13,3
Algunas Veces 32 35,6 35,6 48,9
Casi Siempre 40 44,4 44,4 93,3
Siempre 6 6,7 6,7 100,0
Total 90 100,0 100,0

Nota: Elaboracion propia a partir de SPSS version 26.
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Figura 10

Pregunta 4: Comprendo las sesiones de aprendizaje

500

407

Porcentaje
=

0

10

Nimca Roarn vez Abgmims Veces Casl siengare Bwanpre

Nota: Distribucion porcentual de la pregunta 4.

Interpretacion:

De acuerdo a la pregunta 4, acerca de la comprension de las sesiones de aprendizaje
mencionan que el 44.4% (40 encuestados) mencionan casi siempre, 35.6% (32 encuestados)
mencionan algunas veces, 11.1% (10 encuestado) mencionan rara vez, 6.7% (6 encuestado)

siempre y 2.2% (2 encuestados) mencionan nunca.

Tabla 7

Pregunta 5: Planifico mis tareas académicas

. . Porcentaje Porcentaje
Frecuencia Porcentaje

valido acumulado
Valido Nunca 2 2,2 2,2 2,2
Rara Vez 16 17,8 17,8 20,0
Algunas Veces 38 42,2 42,2 62,2
Casi Siempre 27 30,0 30,0 92,2
Siempre 7 7,8 7,8 100,0
Total 90 100,0 100,0

Nota: Elaboracion propia a partir de SPSS version 26.
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Figura 11

Pregunta 5: Planifico mis trabajos académicos
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Nota: Distribucion porcentual de la pregunta 5.

Interpretacién:

De acuerdo a la pregunta 5, acerca de la planificacion de las tareas académicas mencionan
que el 42.2% (38 encuestados) mencionan algunas veces, el 30.0% (27 encuestados)
mencionan casi siempre, 17.8% (16 encuestado) mencionan rara vez, 7.8% (7 encuestado)
siempre y 2.2% (2 encuestados) mencionan nunca.

Tabla 8
Pregunta 6: Utilizo la biblioteca para ampliar mis conocimientos

Porcentaje Porcentaje

Frecuencia Porcentaje valido acumulado
Valid Nunca 2 2,2 2,2 2,2
(o) Rara Vez 19 21,1 21,1 23,3
Algunas Veces 46 51,1 51,1 74,4
Casi Siempre 18 20,0 20,0 94,4
Siempre 5 5,6 5,6 100,0
Total 90 100,0 100,0

Nota: Elaboracién propia a partir de SPSS version 26.
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Figura 12

Pregunta 6: Utilizo la biblioteca para ampliar mis conocimientos
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Nota: Distribucion porcentual de la pregunta 6.

Interpretacion:

De acuerdo a la pregunta 6, acerca del uso de la biblioteca para ampliar los conocimientos
mencionan que el 51.1% (46 encuestados) mencionan algunas veces, el 21.1% (19 encuestados)
mencionan rara vez, el 20% (18 encuestados) mencionan casi siempre, el 5.6% (5 encuestados)

siempre y el 2.2% (2 encuestados) mencionan nunca.

Tabla 9

Pregunta 7: Mis padres apoyan en mis conocimientos académicos

Porcentaje Porcentaje

Frecuencia Porcentaje valido acumulado
Valido Nunca 22 24,4 24,4 24,4
Rara Vez 28 31,1 31,1 55,6
Algunas Veces 24 26,7 26,7 82,2
Casi Siempre 6 6,7 6,7 88,9
Siempre 10 11,1 11,1 100,0
Total 90 100,0 100,0

Nota: Elaboracion propia a partir de SPSS version 26.
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Figura 13

Pregunta 7: Mis padres apoyan en mis conocimientos académicos
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Nota: Distribucion porcentual de la pregunta 7.

Interpretacion:

De acuerdo a la pregunta 7, acerca del apoyo de los padres en el conocimiento académico
mencionan que el 31.1% (28 encuestados) mencionan rara vez, luego el 26.7% (24 encuestados)
mencionan algunas veces, el 24.4% (22 encuestados) mencionan nunca, el 11.1% (10

encuestado) siempre y el 6.7% (6 encuestados) mencionan casi siempre.

Tabla 10

Pregunta 8: Utilizo equipos y herramientas académicas de casa para estudiar

Porcentaje Porcentaje

Frecuencia Porcentaje valido acumulado
Valido Nunca 2 2,2 2,2 2,2
Rara Vez 24 26,7 26,7 28,9
Algunas Veces 21 23,3 23,3 52,2
Casi Siempre 30 33,3 33,3 85,6
Siempre 13 14,4 14,4 100,0
Total 90 100,0 100,0

Nota: Elaboracion propia a partir de SPSS version 26.
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Figura 14

Pregunta 8: Utilizo equipos y herramientas académicas de casa para estudiar
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Nota: Distribucion porcentual de la pregunta 8.

Interpretacion:

De acuerdo a la pregunta 8, acerca del uso de equipos y herramientas académicas para
estudiar mencionan que el 33.3% (30 encuestados) mencionan casi siempre, mientras que el
26.7% (24 encuestados) mencionan rara vez, el 23.3% (21 encuestados) mencionan algunas
veces, el 14.4% (13 encuestados) mencionan siempre y el 2.2% (2 encuestados) mencionan

nunca.

Tabla 11

Pregunta 9: Recibo apoyo financiero familiar para mis estudios

Porcentaje Porcentaje

Frecuencia Porcentaje valido acumulado
Valido Nunca 10 11,1 11,1 11,1
Rara Vez 19 21,1 21,1 32,2
Algunas Veces 37 41,1 41,1 73,3
Casi Siempre 16 17,8 17,8 91,1
Siempre 8 8,9 8,9 100,0
Total 90 100,0 100,0

Nota: Elaboracién propia a partir de SPSS version 26.
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Figura 15

Pregunta 9: Recibo apoyo financiero familiar para mis estudios
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Nota: Distribucion porcentual de la pregunta 9.

Interpretacion:

De acuerdo a la pregunta 9, acerca del apoyo financiero para sus estudios mencionan que el
41.1% (37 encuestados) mencionan algunas veces, mientras que el 21.1% (19 encuestados)
mencionan rara vez, el 17.8% (16 encuestados) mencionan casi siempre, el 11.1% (10

encuestados) mencionan nunca y el 8.9% (8 encuestados) mencionan siempre.

Tabla 12

Pregunta 10: Realizo desenvolvimiento social con mis vecinos

Porcentaje Porcentaje

Frecuencia Porcentaje valido acumulado
Valido Nunca 6 6,7 6,7 6,7
Rara Vez 13 14,4 14,4 21,1
Algunas Veces 37 41,1 41,1 62,2
Casi Siempre 24 26,7 26,7 88,9
Siempre 10 11,1 11,1 100,0
Total 90 100,0 100,0

Nota: Elaboracion propia a partir de SPSS version 26.
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Figura 16

Pregunta 10: Realizo desenvolvimiento social con mis vecinos
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Nota: Distribucion porcentual de la pregunta 10.

Interpretacién:

De acuerdo a la pregunta 10, acerca del desenvolvimiento social con los vecinos del
encuestado manifiestan que el 41.1% (37 encuestados) mencionan algunas veces, mientras que
el 26.7% (24 encuestados) mencionan casi siempre, el 14.4% (13 encuestados) mencionan rar

vez, el 11.1% (10 encuestados) mencionan siempre y el 6.7% (6 encuestados) mencionan nunca.

Tabla 13

Pregunta 11: Participo en actividades deportivas en mi barrio

Porcentaje Porcentaje

Frecuencia Porcentaje valido acumulado
Valido  Nunca 7 7,8 7,8 7,8
Rara Vez 19 21,1 21,1 28,9
Algunas Veces 36 40,0 40,0 68,9
Casi Siempre 21 23,3 23,3 92,2
Siempre 7 7,8 7,8 100,0
Total 90 100,0 100,0

Nota: Elaboracion propia a partir de SPSS version 26.
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Figura 17

Pregunta 11: Participo en actividades deportivas en mi barrio
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Nota: Distribucién porcentual de la pregunta 11.

Interpretacion:

De acuerdo a la pregunta 11, acerca de la participaciéon en actividades deportivas en sus
barrios manifiestan que el 40% (36 encuestados) mencionan algunas veces, mientras que el
23.3% (21 encuestados) mencionan casi siempre, el 19% (19 encuestados) mencionan rar vez,
el 7.8% (7 encuestados) mencionan siempre y nunca.

Tabla 14

Pregunta 12: Participo en actividades comunitarias con los conocimientos adquiridos

Porcentaje Porcentaje

Frecuencia Porcentaje valido acumulado
Valido Nunca 8 8,9 8,9 8,9
Rara Vez 31 34,4 344 43,3
Algunas Veces 29 32,2 32,2 75,6
Casi Siempre 20 22,2 22,2 97,8
Siempre 2 2,2 2,2 100,0
Total 90 100,0 100,0

Nota: Elaboracion propia a partir de SPSS version 26.
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Figura 18

Pregunta 12: Participo en actividades comunitarias con los conocimientos adquiridos
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Nota: Distribucion porcentual de la pregunta 12.

Interpretacién:

De acuerdo a la pregunta 12, acerca de la participacion en actividades comunitarias con los
conocimientos adquiridos manifiestan que el 34.4% (31 encuestados) mencionan rara vez,
mientras que el 32.2% (29 encuestados) mencionan algunas veces, el 22.2% (20 encuestados)
mencionan casi siempre, el 8.9% (8 encuestados) mencionan nunca y el 2.2% (2 encuestados)

mencionaron siempre.

Tabla 15

Pregunta 13: Los medios de comunicacion apoyan el desarrollo de mis conocimientos

Porcentaje  Porcentaje

Frecuencia Porcentaje valido acumulado
Valido Nunca 10 11,1 11,1 11,1
Rara Vez 41 45,6 45,6 56,7
Algunas Veces 19 21,1 21,1 77,8
Casi Siempre 17 18,9 18,9 96,7
Siempre 3 3,3 3,3 100,0
Total 90 100,0 100,0

Nota: Elaboracion propia a partir de SPSS version 26.
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Figura 19

Pregunta 13: Los medios de comunicacion apoyan el desarrollo de mis conocimientos
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Nota: Distribucién porcentual de la pregunta 13.

Interpretacion:

De acuerdo a la pregunta 13, acerca de los aportes de medios de comunicaciéon en el
desarrollo del conocimiento manifiestan que el 45.6% (41 encuestados) mencionan rara vez,
mientras que el 21.1% (19 encuestados) mencionan algunas veces, el 18.9% (17 encuestados)
mencionan casi siempre, el 11.1% (10 encuestados) mencionan nuncay el 3.3% (3 encuestados)
mencionaron siempre.

Tabla 16

Pregunta 14: Planifico mis actividades académicas constantemente

Porcentaje Porcentaje

Frecuencia Porcentaje  valido acumulado
Valido Nunca 2 2,2 2,2 2,2
Rara Vez 16 17,8 17,8 20,0
Algunas Veces 38 42,2 42,2 62,2
Casi Siempre 27 30,0 30,0 92,2
Siempre 7 7,8 7,8 100,0
Total 90 100,0 100,0

Nota: Elaboracién propia a partir de SPSS version 26.
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Figura 20

Pregunta 14: Planifico mis actividades académicas constantemente
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Nota: Distribucién porcentual de la pregunta 14.

Interpretacién:

De acuerdo a la pregunta 14, acerca de planificar los estudios constantemente manifiestan
que el 42.2.6% (38 encuestados) mencionan algunas veces, mientras que el 30% (27
encuestados) mencionan casi siempre, el 17.8% (16 encuestados) mencionan rara vez, el 7.8%

(7 encuestados) mencionan siempre y el 2.2% (2 encuestados) mencionaron nunca.

Tabla 17

Pregunta 15: Planifico el uso de TICs para mis estudios e investigaciones

Porcentaje  Porcentaje

Frecuencia Porcentaje valido acumulado
Valido Rara Vez 9 10,0 10,0 10,0
Algunas Veces 14 15,6 15,6 25,6
Casi Siempre 36 40,0 40,0 65,6
Siempre 31 34,4 34,4 100,0
Total 90 100,0 100,0

Nota: Elaboracion propia a partir de SPSS version 26.
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Figura 21

Pregunta 15: Planifico el uso de TICs para mis estudios e investigaciones
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Nota: Distribucién porcentual de la pregunta 15.

Interpretacion:

De acuerdo a la pregunta 15, acerca de planificar el uso de TICs para estudios e
investigaciones manifiestan que el 40% (36 encuestados) mencionan casi siempre, mientras
que el 34.4% (31 encuestados) mencionan siempre, el 15.6% (14 encuestados) mencionan

algunas veces y el 10% (9 encuestados) mencionan rara vez.

Tabla 18

Pregunta 16: Planifico realizar proyectos de emprendimiento académico

Porcentaje Porcentaje

Frecuencia Porcentaje valido acumulado
Valido Nunca 18 20,0 20,0 20,0
Rara Vez 12 13,3 13,3 33,3
Algunas Veces 21 23,3 23,3 56,7
Casi Siempre 28 31,1 31,1 87,8
Siempre 11 12,2 12,2 100,0
Total 90 100,0 100,0

Nota: Elaboracién propia a partir de SPSS version 26.
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Figura 22

Pregunta 16: Planifico realizar proyectos de emprendimiento académico
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Nota: Distribucion porcentual de la pregunta 16.

Interpretacion:

De acuerdo a la pregunta 16, acerca de planificar proyectos de emprendimiento académico
manifiestan que el 31.1% (28 encuestados) mencionan casi siempre, mientras que el 23.3% (21
encuestados) mencionan algunas veces, el 20% (18 encuestados) mencionan nunca, el 13.3%

(12 encuestados) mencionan rara vez y el 12.2% (11 encuestados) mencionan siempre.

Tabla 19

Pregunta 17: Existe socializacién académica con los docentes

Porcentaje ~ Porcentaje

Frecuencia Porcentaje valido acumulado
Valido Nunca 6 6,7 6,7 6,7
Rara Vez 30 33,3 33,3 40,0
Algunas Veces 32 35,6 35,6 75,6
Casi Siempre 17 18,9 18,9 94,4
Siempre 5 5,6 5,6 100,0
Total 90 100,0 100,0

Nota: Elaboracion propia a partir de SPSS version 26.
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Figura 23

Pregunta 17: Existe socializacién académica con los docentes
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Nota: Distribucion porcentual de la pregunta 17.

Interpretacion:

De acuerdo a la pregunta 17, acerca de la socializacién académica con los docentes
manifiestan que el 35.6% (32 encuestados) mencionan algunas veces, mientras que el 33.3%
(30 encuestados) mencionan rara vez, el 18.9% (17 encuestados) mencionan casi siempre, el

6.7% (6 encuestados) mencionan nunca y el 5.6% (5 encuestados) mencionan siempre.

Tabla 20

Pregunta 18: Existe satisfacciéon académica en mi experiencia universitaria

Porcentaje Porcentaje

Frecuencia Porcentaje valido acumulado
Vélido Nunca 2 2,2 2,2 2,2
Rara Vez 16 17,8 17,8 20,0
Algunas Veces 35 38,9 38,9 58,9
Casi Siempre 33 36,7 36,7 95,6
Siempre 4 4,4 4,4 100,0
Total 90 100,0 100,0

Nota: Elaboracion propia a partir de SPSS version 26.

Figura 24
Pregunta 18: Existe satisfaccion académica en mi experiencia universitaria
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Nota: Distribucion porcentual de la pregunta 18.

Interpretacion:

De acuerdo a la pregunta 18, acerca de la satisfaccion académica como experiencia
universitaria en general manifiestan que el 38.9% (35 encuestados) mencionan algunas veces,
mientras que el 36.7% (33 encuestados) mencionan casi siempre, el 17.8% (16 encuestados)
mencionan rara vez, el 4.4% (4 encuestados) mencionan siempre y el 2.2% (2 encuestados)

mencionan nunca.

Tabla 21

Pregunta 19: El nivel de logro de aprendizaje es satisfactorio

Porcentaje Porcentaje

Frecuencia Porcentaje valido acumulado
Valido Insuficie 12 13.3 13.3 13.3
nte
Aprobado 64 71.1 71.1 84.4
Bueno 14 15.6 15.6 100.0
Total 90 100.0 100.0

Nota: Elaboracion propia a partir de SPSS version 26.

101



Figura 25

Pregunta 19: El nivel de logro de aprendizaje es satisfactorio
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Nota: Distribucién porcentual de la pregunta 19.

Interpretacién:

Conforme a la pregunta 19, acerca del logro de aprendizaje obtenido, en general manifiestan
que el 13.3% (12 encuestados) mencionan rara vez, mientras que el 71.1% (64 encuestados)

mencionan algunas veces y el 15.6% (14 encuestados) mencionan que el logro fue casi siempre.

Variable 2: algoritmos de aprendizaje automatico

Tabla 22
Po1: Aprendizaje dimensién actitud del algoritmo arboles de decisiéon

Porcentaje  Porcentaje

Frecuencia Porcentaje valido acumulado
Valido Raravez 9 10.0 10.0 10.0
Algunas veces 52 57.8 57.8 67.8
Casi siempre 29 32.2 32.2 100.0
Total 90 100,0 100,0

Nota: Elaboracion propia a partir de SPSS version 26.
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Figura 26

Po1: Aprendizaje dimension actitud del algoritmo arboles de decision
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Nota: Distribucion porcentual de la pregunta o1.

Interpretacion:

De acuerdo al criterio 01, referente al aprendizaje en la dimension actitud del algoritmo
arboles de decision establece que el 57.8% (52 encuestados) mencionan algunas veces,
mientras que el 32.2% (29 encuestados) mencionan casi siempre y el 10% (9 encuestados)

mencionan rara vez.

Tabla 23

Poz2: Aprendizaje dimension medio ambiente del algoritmo arboles de decision

Porcentaj Porcentaje

Frecuencia Porcentaje evalido acumulado

Valido Rara vez 15 16.7 16.7 16.7
Algunas veces 62 68.9 68.9 85.6
Casi siempre 13 14.4 14.4 100.0
Total 90 100,0 100,0

Nota: Elaboracion propia a partir de SPSS version 26.
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Figura 27

Poz2: Aprendizaje dimension medio ambiente del algoritmo arboles de decision
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Nota: Distribucion porcentual de la pregunta 02.

Interpretacion:

De acuerdo al criterio 02, referente al aprendizaje en la dimensién medio ambiente del
algoritmo arboles de decision establece que el 68.9% (62 encuestados) mencionan algunas
veces, mientras que el 16.7% (15 encuestados) mencionan rara vez y el 14.4% (13 encuestados)

mencionan casi siempre.

Tabla 24

Po3: Aprendizaje dimension instruccion del algoritmo arboles de decision

Porcentaje Porcentaje

Frecuencia Porcentaje valido acumulado
Valido Rara vez 7 7.8 7.8 7.8
Algunas veces 68 75.6 75.6 83.3
Casi siempre 15 16.7 16.7 100.0
Total 90 100,0 100,0

Nota: Elaboracion propia a partir de SPSS version 26.
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Figura 28
Po3: Aprendizaje dimension instruccion del algoritmo arboles de decision
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Nota: Distribucion porcentual de la pregunta 03.

Interpretacion:
De acuerdo al criterio 03, referente al aprendizaje en la dimension instruccion del algoritmo

arboles de decision establece que el 75.6% (68 encuestados) mencionan algunas veces,
mientras que el 16.7% (15 encuestados) mencionan casi siempre y el 7.8% (7 encuestados)

mencionan rara vez.

Tabla 25
Po4: Aprendizaje Logro del algoritmo arboles de decisién
Porcentaje Porcentaje

Frecuencia Porcentaje valido acumulado
Valido Rara vez 12 13.3 13.3 13.3
Algunas 64 71.1 71.1 84.4
veces
Casi 14 15.6 15.6 100.0
siempre
Total 90 100.0 100.0

Nota: Elaboracion propia a partir de SPSS version 26.
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Figura 29
Po4: Aprendizaje Logro del algoritmo arboles de decision
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Nota: Distribucién porcentual de la pregunta 04.

Interpretacién:

De acuerdo al criterio 04, referente al aprendizaje en la dimensién logro del algoritmo
arboles de decision establecen que el 13.3% (12 encuestados) mencionan rara vez, mientras que

el 71.1% (64 encuestados) mencionan algunas veces y el 15.6% (14 encuestados) casi siempre.

Tabla 26

Poj: Asertividad dimensién aptitud del algoritmo arboles de decision

Porcentaje Porcentaje

Frecuencia Porcentaje valido acumulado
Valido Rara vez 12 13.3 13.3 13.3
Algunas veces 49 54.4 54.4 67.8
Casi siempre 29 32.2 32.2 100.0
Total 90 100,0 100,0

Nota: Elaboracién propia a partir de SPSS version 26.
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Figura 30
Pos: Asertividad dimension aptitud del algoritmo arboles de decisiéon
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Nota: Distribucion porcentual de la pregunta o5.

Interpretacion:

De acuerdo al criterio 05, de asertividad en la dimension aptitud del algoritmo arboles de
decision establece que el 54.4% (49 encuestados) mencionan algunas veces, mientras que el
32.2% (29 encuestados) mencionan casi siempre y el 13.3% (12 encuestados) mencionan rara

Vez.

Tabla 27

Poé6: Asertividad dimension medio ambiente del algoritmo arboles de decision

Porcentaje Porcentaje

Frecuencia Porcentaje valido acumulado
Vélido Raravez 20 22.2 22.2 22.2
Algunas veces 57 63.3 63.3 85.6
Casi siempre 13 14.4 14.4 100.0
Total 90 100,0 100,0

Nota: Elaboracion propia a partir de SPSS version 26.
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Figura 31

Po6: Asertividad dimension medio ambiente del algoritmo arboles de decision
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Nota: Distribucion porcentual de la pregunta o5.

Interpretacion:

De acuerdo al criterio 06, de asertividad en la dimensiéon medio ambiente del algoritmo
arboles de decision establece que el 63.3% (57 encuestados) mencionan algunas veces, mientras
que el 22.2% (20 encuestados) mencionan rara vez y el 14.4% (13 encuestados) mencionan casi

siempre.

Tabla 28

Po7: Asertividad dimensién instruccion del algoritmo arboles de decision

Porcentaje Porcentaje

Frecuencia Porcentaje  valido acumulado
Valido  Rara vez 7 7.8 7.8 7.8
Algunas veces 68 75.6 75.6 83.3
Casi siempre 15 16.7 16.7 100.0
Total 90 100,0 100,0

Nota: Elaboracion propia a partir de SPSS version 26.
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Figura 32

Po7: Asertividad dimension instruccion del algoritmo arboles de decisiéon
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Nota: Distribucién porcentual de la pregunta o7.

Interpretacion:
De acuerdo al criterio 07, de asertividad en la dimension instruccion del algoritmo arboles
de decision establece que el 75.6% (68 encuestados) menciona algunas veces, mientras que el

16.7% (15 encuestados) menciona casi siempre y el 7.8% (7 encuestados) menciona rara.

Tabla 29

Po8: Asertividad dimensién logro del algoritmo arboles de decision

Porcentaje Porcentaje

Frecuencia Porcentaje valido acumulado
Valido Rara vez 12 13.3 13.3 13.3
Algunas veces 64 71.1 71.1 84.4
Casi siempre 14 15.6 15.6 100.0
Total 90 100.0 100.0

Nota: Elaboracién propia a partir de SPSS version 26.
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Figura 33
Po8: Asertividad dimensién logro del algoritmo arboles de decision
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Nota: Distribucién porcentual de la pregunta 08.

Interpretacién:
De acuerdo al criterio 08, de asertividad en la dimension logro del algoritmo arboles de
decision establece que el 13.3% (12 encuestados) menciona rara vez, mientras que el 71.1% (54

encuestados) menciona algunas veces y el 15.8.8% (14 encuestados) casi siempre.

Tabla 30
Pog: Aprendizaje dimension aptitud del algoritmo Naive Bayes

Porcentaje  Porcentaje

Frecuencia Porcentaje  valido acumulado
Valido  Raravez 9 10.0 10.0 10.0
Algunas veces 52 57.8 57.8 67.8
Casi siempre 29 32.2 32.2 100.0
Total 90 100,0 100,0

Nota: Elaboracion propia a partir de SPSS version 26.
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Figura 34
Po9: Aprendizaje dimension aptitud del algoritmo Naive Bayes
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Nota: Distribucién porcentual de la pregunta 09.

Interpretacion:

De acuerdo al criterio 09, referente al aprendizaje en la dimension aptitud del algoritmo
Naive Bayes establece que el 57.8% (52 encuestados) mencionan algunas veces, mientras que
el 32.2% (29 encuestados) mencionan casi siempre y el 10% (9 encuestados) mencionan rara

vez.

Tabla 31

Poi1o: Aprendizaje dimension medio ambiente del algoritmo Naive Bayes

Porcentaj Porcentaje

Frecuencia Porcentaje evalido acumulado

Valido Rara vez 15 16.7 16.7 16.7
Algunas veces 62 68.9 68.9 85.6
Casi siempre 13 14.4 14.4 100.0
Total 90 100,0 100,0

Nota: Elaboracién propia a partir de SPSS version 26.
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Figura 35
Poi1o: Aprendizaje dimension medio ambiente del algoritmo Naive Bayes
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Nota: Distribucién porcentual de la pregunta o010.

Interpretacion:

De acuerdo al criterio 010, referente al aprendizaje en la dimension medio ambiente del
algoritmo Naive Bayes establece que el 68.9% (62 encuestados) mencionan algunas veces,
mientras que el 16.7% (15 encuestados) mencionan rara vez y el 14.4% (13 encuestados)

mencionan casi siempre.

Tabla 32

Po11: Aprendizaje dimension instruccion del algoritmo Naive Bayes

Porcentaje Porcentaje

Frecuencia Porcentaje valido acumulado
Valido Raravez 7 7.8 7.8 7.8
Algunas veces 68 75.6 75.6 83.3
Casi siempre 15 16.7 16.7 100.0
Total 90 100,0 100,0

Nota: Elaboracion propia a partir de SPSS version 26.
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Figura 36

Po11: Aprendizaje dimension instruccion del algoritmo Naive Bayes
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Nota: Distribucién porcentual de la pregunta o11.

Interpretacion:

De acuerdo al criterio 011, referente al aprendizaje en la dimensién instruccion del algoritmo
Naive Bayes establece que el 75.6% (68 encuestados) mencionan algunas veces, mientras que
el 16.7% (15 encuestados) mencionan casi siempre y el 7.8% (77 encuestados) mencionan rara

Vez.

Tabla 33
Poi2: Aprendizaje logro del algoritmo Naive Bayes

Porcentaje Porcentaje

Frecuencia Porcentaje valido acumulado
Valido Rara vez 12 13.3 13.3 13.3
Algunas veces 64 71.1 71.1 84.4
Casi siempre 14 15.6 15.6 100.0
Total 90 100.0 100.0
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Figura 37

Poiz2: Aprendizaje logro del algoritmo Naive Bayes
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Nota: Distribucién porcentual de la pregunta o12.

Interpretacion:

De acuerdo al criterio 012, referente al aprendizaje en la dimensién logro del algoritmo

Naive Bayes establece que el 13.3% (12 encuestados) mencionan rara vez, mientras que el 71.1%

(64 encuestados) mencionan algunas veces y el 15.6% (14 encuestados) mencionan casi

siempre.

Tabla 34

Po13: Asertividad en la dimensién aptitud del algoritmo Naive Bayes

Porcentaje Porcentaje

Frecuencia Porcentaje valido acumulado
Valido Raravez 12 13.3 13.3 13.3
Algunas veces 50 55.6 55.6 68.9
Casi siempre 28 31.1 31.1 100.0
Total 90 100,0 100,0

Nota: Elaboracion propia a partir de SPSS version 26.
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Figura 38
Po13: Asertividad en la dimensién aptitud del algoritmo Naive Bayes
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Nota: Distribucién porcentual de la pregunta 013.

Interpretacion:
De acuerdo al criterio 013, de asertividad en la dimension aptitud del algoritmo Naive Bayes
establece que el 55.6% (50 encuestados) responde algunas veces, mientras que el 31.1% (28

encuestados) responde casi siempre y el 13.3% (12 encuestados) responde rara vez.

Tabla 35

Po14: Asertividad dimensién medio ambiente del algoritmo Naive Bayes

Porcentaje Porcentaje

Frecuencia Porcentaje valido acumulado
Valido Raravez 16 17.8 17.8 17.8
Algunas veces 58 64.4 64.4 82.2
Casi siempre 16 17.8 17.8 100.0
Total 90 100,0 100,0

Nota: Elaboracion propia a partir de SPSS version 26.
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Figura 39
Po14: Asertividad en la dimensién medio ambiente del algoritmo Naive Bayes
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Nota: Distribucion porcentual de la pregunta 014.

Interpretacion:

De acuerdo al criterio 014, de asertividad en la dimensién medio ambiente del algoritmo
Naive Bayes establece que el 64.4% (58 encuestados) responde algunas veces, mientras que el

17.8% (16 encuestados) responde rara vez y, casi siempre.

Tabla 36

Pois: Asertividad dimension instruccion del algoritmo Naive Bayes

Porcentaje Porcentaje

Frecuencia Porcentaje  valido acumulado
Valido Rara vez 10 11.1 11.1 11.1
Algunas veces 62 68.9 68.9 80.0
Casi siempre 18 20.0 20.0 100.0
Total 90 100,0 100,0

Nota: Elaboracién propia a partir de SPSS version 26.
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Figura 40

Poi5: Asertividad dimension instruccion del algoritmo Naive Bayes
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Nota: Distribucién porcentual de la pregunta 015.

Interpretacion:
De acuerdo al criterio 015, de asertividad en la dimension instruccién del algoritmo Naive
Bayes establece que el 68.9% (62 encuestados) responde algunas veces, mientras que el 20%

(18 encuestados) responde casi siempre y 11.1% (10 encuestados) responde casi siempre.

Tabla 37
Po16: Asertividad logro del algoritmo Naive Bayes

Porcentaje Porcentaje

Frecuencia Porcentaje valido acumulado
Valido Rara vez 12 13.3 13.3 13.3
Algunas veces 64 71.1 71.1 84.4
Casi siempre 14 15.6 15.6 100.0
Total 90 100.0 100.0

Nota: Elaboracion propia a partir de SPSS version 26.
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Figura 41
Po16: Asertividad logro del algoritmo Naive Bayes
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Nota: Distribucién porcentual de la pregunta 016.

Interpretacion:
De acuerdo al criterio 016, referente a asertividad en la dimension logro del algoritmo Naive
Bayes establece que el 13.3% (12 encuestados) mencionan rara vez, mientras que el 71.1% (64

encuestados) mencionan algunas veces y el 15.6% (14 encuestados) mencionan casi siempre.

Tabla 38

Po17: Aprendizaje dimensién instruccién del algoritmo Random Forest

Porcentaje Porcentaje

Frecuencia Porcentaje véalido acumulado
Valido Raravez 9 10.0 10.0 10.0
Algunas veces 52 57.8 57.8 67.8
Casi siempre 29 32.2 32.2 100.0
Total 90 100,0 100,0

Nota: Elaboracion propia a partir de SPSS version 26.
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Figura 42
Po1y7: Aprendizaje dimension instrucciéon del algoritmo Random Forest
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Nota: Distribucién porcentual de la pregunta 017.

Interpretacion:
De acuerdo al criterio 017, referente al aprendizaje en la dimension instruccion del

algoritmo Random Forest establece que el 57.8% (52 encuestados) responden algunas veces,
mientras que el 32.2% (29 encuestados) responde casi siempre y el 10% (9 encuestados)

mencionan rara vez.

Tabla 39
Po018: Aprendizaje dimension medio ambiente del algoritmo Random Forest

Porcentaj Porcentaje

Frecuencia Porcentaje evalido acumulado

Valido Rara vez 15 16.7 16.7 16.7
Algunas veces 62 68.9 68.9 85.6
Casi siempre 13 14.4 14.4 100.0
Total 90 100,0 100,0

Nota: Elaboracion propia a partir de SPSS version 26.
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Figura 43
P018: Aprendizaje dimension medio ambiente del algoritmo Random Forest
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Nota: Distribucion porcentual de la pregunta 018.

Interpretacion:

De acuerdo al criterio 018, referente al aprendizaje en la dimension medio ambiente del
algoritmo Random Forest establece que el 68.9% (62 encuestados) responde algunas veces,
mientras que el 16.7% (15 encuestados) responde rar vez y el 14.4% (13 encuestados) responde

casi siempre.

Tabla 40

Po19: Aprendizaje dimensién instruccion del algoritmo Random Forest

Porcentaje Porcentaje

Frecuencia Porcentaje valido acumulado
Valido  Raravez 7 7.8 7.8 7.8
Algunas veces 68 75.6 75.6 83.3
Casi siempre 15 16.7 16.7 100.0
Total 90 100,0 100,0

Nota: Elaboracion propia a partir de SPSS version 26.

Figura 44

P019: Aprendizaje dimension instruccion del algoritmo Random Forest
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Nota: Distribucién porcentual de la pregunta 019.

Interpretacion:

De acuerdo al criterio 019, referente al aprendizaje en la dimensién instruccién del
algoritmo Random Forest establece que el 75.6% (68 encuestados) responde algunas veces,
mientras que el 16.7% (15 encuestados) responde casi siempre y el 7.8% (7 encuestados)

responde rara vez.

Tabla 41
Po20: Aprendizaje logro del algoritmo Random Forest

Porcentaje Porcentaje

Frecuencia Porcentaje valido acumulado
Valido Rara vez 12 13.3 13.3 13.3
Algunas veces 64 71.1 71.1 84.4
Casi siempre 14 15.6 15.6 100.0
Total 90 100.0 100.0

Nota: Elaboracién propia a partir de SPSS version 26.
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Figura 45
Po2o: Aprendizaje logro del algoritmo Random Forest
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Nota: Distribucion porcentual de la pregunta 020.

Interpretacion:

De acuerdo al criterio 020, referente a aprendizaje en la dimension logro del algoritmo
Random Forest establece que el 13.3% (12 encuestados) mencionan rara vez, mientras que el
71.1% (64 encuestados) mencionan algunas veces y el 15.6% (14 encuestados) mencionan casi

siempre.

Tabla 42
Poz21: Asertividad dimension aptitud del algoritmo Random Forest

Porcentaje Porcentaje

Frecuencia Porcentaje valido acumulado
Valido Raravez 8 8.9 8.9 8.9
Algunas veces 53 58.9 58.9 67.8
Casi siempre 29 32.2 32.2 100.0
Total 90 100,0 100,0

Nota: Elaboracion propia a partir de SPSS version 26.

Figura 46

Po21: Asertividad dimensi6n aptitud del algoritmo Random Forest
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Nota: Distribucién porcentual de la pregunta 021.

Interpretacion:
De acuerdo al criterio 021, de asertividad en la dimension aptitud del algoritmo Random
Forest establece que el 58.9% (53 encuestados) responde algunas veces, mientras que el 32.2%

(29 encuestados) responde casi siempre y el 8.9% (8 encuestados) responde rara vez.

Tabla 43

Po22: Asertividad dimensién medio ambiente del algoritmo Random Forest

Porcentaje Porcentaje

Frecuencia  Porcentaje valido acumulado
Valido Rara vez 15 16.7 16.7 16.7
Algunas veces 61 67.8 67.8 84.4
Casi siempre 14 15.6 15.6 100.0
Total 90 100,0 100,0

Nota: Elaboracion propia a partir de SPSS version 26.
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Figura 47
Po22: Asertividad dimension medio ambiente del algoritmo Random Forest

Paorcentaje

Nota: Distribucién porcentual de la pregunta 022.

Interpretacion:
De acuerdo al criterio 022, de asertividad en la dimension medio ambiente del algoritmo
Random Forest establece que el 67.8% (61 encuestados) responde algunas veces, mientras que

el 16.7% (15 encuestados) responde rara vez y el 15.6% (14 encuestados) responde casi siempre.

Tabla 44
Po23: Asertividad dimension instrucciéon del algoritmo Random Forest

Porcentaje Porcentaje

Frecuencia  Porcentaje valido acumulado
Valido  Rara vez 9 10.0 10.0 10.0
Algunas veces 66 73.3 73.3 83.3
Casi siempre 15 16.7 16.7 100.0
Total 90 100,0 100,0

Nota: Elaboracion propia a partir de SPSS version 26.
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Figura 48

Po23: Asertividad dimension instrucciéon del algoritmo Random Forest

80|

a0

Porcentaje

Almmas veces

Cas sienapre

Nota: Distribucién porcentual de la pregunta 023.

Interpretacion:
De acuerdo al criterio 023, de asertividad en la dimension instrucciéon del algoritmo
Random Forest establece que el 73.3% (66 encuestados) responde algunas veces, mientras que

el 16.7% (15 encuestados) responde casi siempre y el 10% (9 encuestados) responde rara vez.

Tabla 45
Po24: Asertividad logro del algoritmo Random Forest

Porcentaje Porcentaje

Frecuencia Porcentaje valido acumulado
Valido Rara vez 12 13.3 13.3 13.3
Algunas veces 64 71.1 71.1 84.4
Casi siempre 14 15.6 15.6 100.0
Total 90 100.0 100.0

Nota: Elaboracion propia a partir de SPSS version 26.
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Figura 49
Po24: Asertividad logro del algoritmo Random Forest
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Nota: Distribucién porcentual de la pregunta 024.

Interpretacién:

De acuerdo al criterio 024, referente a la asertividad en la dimension logro del algoritmo
Random Forest establece que el 13.3% (12 encuestados) mencionan rara vez, mientras que el
71.1% (64 encuestados) mencionan algunas veces y el 15.6% (14 encuestados) mencionan casi

siempre.

Tabla 46

Poz25: Prediccion

Porcentaje Porcentaje

Frecuencia Porcentaje valido acumulado
Valido Rara vez 10 11.1 11.1 11.1
Algunas veces 53 58.9 58.9 70.0
Casi siempre 24 26.7 26.7 96.7
Siempre 3 3.3 3.3 100.0
Total 90 100.0 100.0

Nota: Elaboracion propia a partir de SPSS version 26.
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Figura 50

Poz25: Prediccion
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Nota: Distribucién porcentual de la pregunta 025.

Interpretacion:

De acuerdo al criterio 025, referente a la prediccion de los algoritmos de aprendizaje
automatico mencionan que el 11.1% (10 encuestados) mencionan rara vez, mientras el 58.9%
(53 encuestados) mencionan algunas veces, el 26.7% (24 encuestados) mencionan casi siempre

y el 3.3% (3 encuestados) mencionan siempre.

Analisis inferencial
Luego de realizar el anéalisis del descriptivo de las variables, procederemos a realizar el
andlisis inferencial que consiste en la prueba de normalidad y prueba de hipétesis planteadas

en el presente trabajo de investigacion.

Prueba de normalidad

Una herramienta estadistica para determinar si un conjunto de datos tiene una distribuciéon
normal o gaussiana es la prueba de normalidad (Ghasemi y Zahediasl, 2012), para ello vamos
a utilizar la prueba Kolmogorov-Smirnov (K-S), a fin de comprobar si los datos de la muestra
proceden de una distribuciéon normal en variables cuantitativas y cuyo tamafio de muestra

poblacional sea mayor a 50 (Ghasemi y Zahediasl, 2012; Mishra et al., 2019).
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Tabla 47

Prueba de normalidad

Kolmogorov-Smirnov?

Estadistico gl Sig.
Productividad Educativa 113 90 .006
Algoritmos de Aprendizaje .143 90 .000

Automatico

a. Correccion de significacion de Lilliefors

Nota: Elaboracion Propia con Software IBM SPSS version 24

Interpretacion:

Se observan en la tabla las pruebas de normalidad para las variables Productividad
educativa y Algoritmos de Aprendizaje Automatico no siguen una distribucion normal, debido
a que el p-valor es < a (0.05) para las dos variables, por lo tanto, utilizaremos pruebas no
paramétricas; asimismo, al no pertenecer a una distribucién normal se procesé con el Rho de

Spearman

Prueba no paramétrica con rho de Spemann

Segiin Martinez Rebollar y Campos Francisco (2015), 1a prueba de Rho de Spearman es una
prueba estadistica no paramétrica que se utiliza para medir la asociacion directa o inversa entre
dos variables cuantitativas (monotoénica), la interpretacion de este tipo de prueba se basa en el

valor de Rho de Spearman, que varia entre -1y 1.

Tabla 48

Interpretacion del coeficiente de correlacion de Spearman
Valor de Rho Significado
-1 Correlacion negativa grande y perfecta
-0,9 a-0,99 Correlacion negativa muy alta
-0,7a-0,89 Correlacién negativa alta
-0,4 a-0,69 Correlacion negativa moderada
-0,2 a-0,39 Correlacion negativa baja
-0,01a-0,19 Correlacion negativa muy baja
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0 Correlacion nula

0,012 0,19 Correlacion positiva muy baja

0,22 0,39 Correlacién positiva baja

0,4 20,69 Correlacién positiva moderada

0,7a 0,89 Correlacion positiva alta

0,9 2 0,99 Correlacion positiva muy alta

1 Correlacion positiva grande y perfecta

Nota: (Martinez Rebollar y Campos Francisco, 2015)

Hipotesis general

Hi: Existe relacion significativa de la productividad educativa con los algoritmos de
aprendizaje automatico en estudiantes EPISI de UNAM, 2023.

Ho: No existe relacion significativa de la productividad educativa con los algoritmos de

aprendizaje automatico en estudiantes EPISI de UNAM, 2023.

Tabla 49
Productividad Académica y Algoritimos de Aprendizaje Automdtico.

Algoritmos de Aprendizaje
Automatico Total

Insuficiente Aprobado Bueno

) Recuento 12 0 0 12
Insuficiente
% del total 13.3% 0.0% 0.0% 13.3%
Productividad Recuento 0 64 0 64
. Aprobado
Académica % del total 0.0% 71.1% 0.0% 71.1%
Recuento 0 0 14 14
Bueno
% del total 0.0% 0.0% 15.6% 15.6%
Recuento 12 64 14 90
Total
% del total 13.3% 71.1% 15.6% 100.0%

Nota: Elaboraciéon Propia con Software IBM SPSS version 26

Interpretacion:

El grado de relacion existente entre las variables productividad educativa y los algoritmos
de aprendizaje automatico es 113.3% (12) Insuficiente, 71.1% (64) Aprobado y 15.6% (14)

Bueno.
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Tabla 50
Prueba no paramétrica. Correlaciones Rho de Spearman entre Productividad Académica

y Algoritmos de Aprendizaje Automatico.

Algoritmos de
Productividad Aprendizaje

Académica Automatico

Rho de Productividad Coeficiente de correlacién 1.000 .940™
Spearman Académica Sig. (bilateral) . .000
N 90 90
Algoritmos deCoeficiente de correlacion .940™ 1.000
Aprendizaje  Sig. (bilateral) .000
Automéatico N 90 90

**_ La correlacion es significativa en el nivel 0,01 (bilateral).

Nota: Elaboracion Propia con Software IBM SPSS version 26

Interpretacion:

El coeficiente de correlacion de Spearman indica una correlacion positiva muy alta, y la Rho
de Spearman es 0,940. Ademas, dado que el nivel de significacion es 0,000 < 0,05, es posible
rechazar la hipdtesis nula y aceptar la alternativa, lo que indica que las variables estan
relacionadas. Esto permite concluir que la productividad académica y los algoritmos de
aprendizaje automatico estan significativamente correlacionados en la EPISI de la UNAM en

2023.

Hipétesis especificas
Hipotesis especifica 1

Hi: Existe relacion significativa en la dimensioén aptitud con los algoritmos de aprendizaje
automatico en estudiantes EPISI de UNAM, 2023.

Ho: No existe relacion significativa en la dimension aptitud con los algoritmos de

aprendizaje automatico en estudiantes EPISI de UNAM, 2023.
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Tabla 51
Aptitud y Algoritmos de Aprendizaje Automadtico.

Algoritmos de Aprendizaje Automatico Total

Insuficiente = Aprobado Bueno
. Recuento 7 2 0] 9
Insuficiente
% del total 7.8% 2.2% 0.0% 10.0%
) Recuento 5 44 3 52
Aptitud Aprobado
% del total 5.6% 48.9% 3.3% 57.8%
Recuento o 18 11 29
Bueno
% del total 0.0% 20.0% 12.2% 32.2%
Recuento 12 64 14 90
Total
% del total 13.3% 71.1% 15.6% 100.0%

Nota: Elaboracion Propia con Software IBM SPSS version 26
Interpretacion:
El nivel de relacion que existe entre Aptitud y los algoritmos de aprendizaje automatico es

7.8% (77) Insuficiente, 48.9% (44) Aprobado y 12.2% (11) Bueno.

Tabla 52
Prueba no paramétrica. Correlaciones Rho de Spearman entre Aptitud y Algoritmos de

Aprendizaje Automadatico.

Algoritmos  de

Aprendizaje
Aptitud  Automatico
Rho deAptitud Coeficiente de correlacion 1.000 .801™
Spearman Sig. (bilateral) . .000
N 90 90
Algoritmos Coeficiente de correlacion .801™ 1.000
de Aprendizaje Sig. (bilateral) .000
Automatico N 90 90

*¥*_ La correlacion es significativa en el nivel 0,01 (bilateral).
Nota: Elaboracion Propia con Software IBM SPSS version 26

Interpretacion:
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Se acepta la hipétesis alternativa y se rechaza la hip6tesis nula porque la Rho de Spearman
es 0.801, lo que indica una alta correlacidon positiva por el coeficiente de correlacion de
Spearman, y porque el nivel de significancia es 0.000, que es menor a 0.05. Esto implica que
los factores tienen una relacion considerable, por lo que se concluye que en la EPISI de la
UNAM en 2023, la aptitud estd correlacionada significativamente con los métodos de

aprendizaje automatico.

Hipotesis especifica 2

Hi: Existe relacion significativa en la dimension instruccion con los algoritmos de
aprendizaje automaético en estudiantes EPISI de UNAM, 2023.

Ho: No existe relacion significativa en la dimension instrucciéon con los algoritmos de

aprendizaje automatico en estudiantes EPISI de UNAM, 2023.

Tabla 53

Instruccion y Algoritmos de Aprendizaje Automadtico.

Algoritmos de Aprendizaje Automéatico  Total

Insuficiente Aprobado Bueno

Insuficiente Recuento 6 1 0 7
% del total 6.7% 1.1% 0.0% 7.8%
., Aprobado Recuento 6 54 8 68
Instruccion
% del total 6.7% 60.0% 8.9% 75.6%
Bueno Recuento o) 9 6 15
% del total 0.0% 10.0% 6.7% 16.7%
Total Recuento 12 64 14 90
% del total 13.3% 71.1% 15.6% 100.0%

Nota: Elaboracion Propia con Software IBM SPSS version 26

Interpretacion:
El nivel de relacion que existe entre Instruccion y los algoritmos de aprendizaje automatico
es 6.7% (6) Insuficiente, 60% (54) Aprobado y 8.9% (8) Bueno.
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Tabla 54
Prueba no paramétrica. Correlaciones Rho de Spearman entre Instruccion y Algoritmos

de Aprendizaje Automatico.

Algoritmos  de

Aprendizaje
Instruccion Automatico
Rho delnstruccion Coeficiente de correlacion 1.000 723"
Spearman Sig. (bilateral) . .000
N 90 90
Algoritmos deCoeficiente de correlacion 723" 1.000
Aprendizaje  Sig. (bilateral) .000
Automéatico N 90 90

**_ La correlacion es significativa en el nivel 0,01 (bilateral).

Nota: Elaboracion Propia con Software IBM SPSS version 26

Interpretacion:

El valor del coeficiente de correlacién de Spearman indica una fuerte asociacion positiva,
con un Rho de Spearman de 0,723. Ademas, se acepta la hipotesis alternativa y se rechaza la
hipétesis nula porque el nivel de significaciéon es 0.000, que es menor que 0.05. Esto muestra
que las variables tienen una asociacion significativa, lo que indica que en la EPISI de la UNAM
en 2023, la instruccion tiene una relacion significativa con los algoritmos de aprendizaje

automatico.

Hipotesis especifica 3

Hi: Existe relacion significativa en la dimension medio ambiente con los algoritmos de
aprendizaje automatico en estudiantes EPISI de UNAM, 2023.

Ho: No existe relacion significativa en la dimensiéon medio ambiente con los algoritmos de

aprendizaje automatico en estudiantes EPISI de UNAM, 2023.

Tabla 55

Medio ambiente y algoritmos de aprendizaje automatico.

Algoritmos de Aprendizaje
. Total
Automatico

Insuficiente Aprobado Bueno
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Insuficiente Recuento 7 8 0 15
% del total 7.8% 8.9% 0.0% 16.7%
Medio  Aprobado Recuento 5 53 4 62
Ambiente % del total 5.6% 58.9% 4.4% 68.9%
Bueno Recuento o 3 10 13
% del total 0.0% 3.3% 11.1% 14.4%
Total Recuento 12 64 14 90
% del total 13.3% 71.1% 15.6% 100.0

%

Nota: Elaboracién Propia con Software IBM SPSS version 26

Interpretacion:

El nivel de relacién que existe entre Medio ambiente y los algoritmos de aprendizaje

automatico es 7.8% (7) Insuficiente, 58.9% (53) Aprobado y 11.1% (10) Bueno.

Tabla 56

Prueba no paramétrica. correlaciones rho de Spearman entre medio ambiente y

algoritmos de aprendizaje automatico.

de

Medio
Ambiente

Rho de

Spearman Algoritmos de
Aprendizaje

Automatico

Algoritmos
Medio Aprendizaje
Ambiente Automatico
Coeficiente de correlacion  1.000 .626™
Sig. (bilateral) .000
N 90 90
Coeficiente de correlacion  .626™ 1.000
Sig. (bilateral) .000
N 90 90

**_ La correlacion es significativa en el nivel 0,01 (bilateral).

Nota: Elaboracion Propia con Software IBM SPSS version 26

Interpretacion:

La correlacién moderadamente positiva entre las variables viene indicada por el coeficiente

de correlacion de Spearman (Rho), que se sitia en 0,626. Ademéas, dado que el nivel de

significancia es de 0.000, es decir, menor a 0.05, se acepta la hipotesis alternativa y se rechaza
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la hipétesis nula. Esto indica que, en el EPISI de la UNAM en 2023, habra una interaccién

sustancial entre el entorno y los algoritmos de aprendizaje automatico.

Hipotesis especifica 4

Hi: Existe relacion significativa en la dimension aprendizaje con los algoritmos de

aprendizaje automatico en estudiantes EPISI de UNAM, 2023.

Ho: No existe relacion significativa en la dimension aprendizaje con los algoritmos de

aprendizaje automatico en estudiantes EPISI de UNAM, 2023.

Tabla 57
Aprendizaje y Algoritmos de Aprendizaje Automatico.

Algoritmos de Aprendizaje Automatico

Insuficiente Aprobado Bueno Total
Insuficiente Recuento 12 0 0] 12
% del total 13.3% 0.0% 0.0% 13.3%
Aprobado  Recuento 0 64 0o 64
Aprendizaje
% del total 0.0% 71.1% 0.0% 71.1%
Bueno Recuento 0 0 14 14
% del total 0.0% 0.0% 15.6% 15.6%
Total Recuento 12 64 14 90
% del total 13.3% 71.1% 15.6% 100.0%

Nota: Elaboracion Propia con Software IBM SPSS version 26

Interpretacion:

El nivel de relacion que existe entre aprendizaje y los algoritmos de aprendizaje automatico

es 13,3% (12) Insuficiente, 71,1% (64) Aprobado y 15,6% (14) Bueno.

de

Tabla 58
Aprendizaje y Algoritmos de Aprendizaje Automdtico.
Algoritmos
Aprendizaje
Aprendizaje Automatico
Rho de Aprendizaje  Coeficiente de correlaciéon 1.000 811
Spearman Sig. (bilateral) . .000
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N 90 90

Algoritmos deCoeficiente de correlacion 811 1.000
Aprendizaje  Sig. (bilateral) .000
Automatico N 90 90

**_ La correlacion es significativa en el nivel 0,01 (bilateral).

Nota: Elaboracion Propia con Software IBM SPSS version 26

Interpretacion:

Con un coeficiente de correlacion de Spearman (Rho) de 0,811, las variables muestran una
fuerte asociacion positiva entre si. Ademéas, dado que el nivel de significacion es de 0.000, es
decir, menor a 0.05, se acepta la hipotesis alternativa y se rechaza la hipotesis nula. Esto indica
que, en el EPISI de la UNAM en 2023, los algoritmos de aprendizaje y aprendizaje automatico

tendran una relacién sustancial.

Discusion de resultados

En la actualidad, la educacién superior se enfrenta a multiples desafios, entre ellos, la
necesidad de mejorar la productividad educativa y la calidad de la formacion de los estudiantes.
En este sentido, la implementaciéon de algoritmos de aprendizaje automético (AA) ha sido
propuesta como una solucién para optimizar el proceso de ensenanza y aprendizaje en la
Escuela Profesional de Ingenieria de Sistemas e Informatica de la Universidad Nacional de
Moquegua. En este estudio, se evalu6 la efectividad de la implementacién de AA en la
productividad educativa de la escuela, es por ello que la presente investigacion consiste en
determinar el nivel de relacion entre la productividad educativa y los algoritmos de aprendizaje
automatico en la Universidad Nacional de Moquegua, 2023; con la prueba no paramétrica Rho
de Spearman se descubri6 un valor inferior a 0,05, es decir, un nivel de significacion de 0,000.
Esto sugiere que las variables tienen una asociacion positiva muy fuerte entre si. Esto sugiere
que las variables tienen una asociacion positiva muy fuerte entre si. Por ejemplo, segtin los
datos de 90 estudiantes evaluados en el EPISI de la UNAM, es probable que los elementos de
aptitud, entorno e instruccion del constructo de productividad educativa estén
significativamente conectados. en donde el 7.8% representado por 7 encuestados establecio
insuficiente, el 48.9% representado por 44 encuestados estableci6 aprobado y el 12.2%
representado por 11 encuestados establecié bueno, frente a ello se rechazo la hipétesis nula y
aceptando la hipotesis planteada en la investigacion referente a la existencia relacional entre la

productividad educativa y los algoritmos de aprendizaje automéatico en EPISI de UNAM, 2023.
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Los resultados mencionados confirman la investigaciéon realizada por Parhizkar et al.,
(2023), denominada “Prediccion del desempefio de los estudiantes utilizando algoritmos de
clasificacion de mineria de datos: evaluacion de la generalizacion de modelos desde el aspecto
geografico” Iran, en donde mostr6 un correlaciéon positiva alta debido a que los algoritmos de
aprendizaje automatico Random forest y redes neuronales convolucionales (CNN) mostraron
mejores rendimientos con un promedio de precision y una puntuacion F de 73,5 y 68,5,
respectivamente.

La presente investigacion corrobora el estudio "Algoritmos de aprendizaje automatico para
la prediccion del rendimiento académico” de Morales Hernandez et al. (2022) realizado en
escuelas del estado mexicano de Tlaxcala, en donde se desarrollaron dos clasificadores de AA:
el modelo de gradient boosting (GB) y la red neuronal multicapa (también conocida como
perceptron multicapa o MLP, por sus siglas en inglés). El objetivo fue predecir el nivel de
productividad académica en las areas de matematicas y espafiol. Los resultados demostraron
que el clasificador MLP super6 al modelo GB en términos de precision de clasificacion general
(PG) para la asignatura de espafol, alcanzando un 70,1% en 2008 y un 61,1% en 2011. Sin
embargo, el modelo GB obtuvo mejores resultados en la asignatura de matematicas, con una
PG del 68,8% en 2008 y del 63,5% en 2011. Estos resultados implican que existe una
correlacion significativa entre el nivel de rendimiento académico en matemaéticas y el
rendimiento en espanol.

Asimismo corrobora la investigacion realizada por Yagci (2022), en su modelo de estudio
denominado Mineria de datos educativos: prediccion de la productividad académica de los
estudiantes de una universidad estatal turca mediante algoritmos de aprendizaje automaético,
en donde propone predecir calificaciones de los exdmenes finales de los estudiantes de
pregrado, en donde referencia las calificaciones de las evaluaciones parciales para dicho
estudio, asimismo utiliza algoritmos ML Random Forest, Vecinos mas Cercanos, Regresion
Logistica, Naive Bayes y algoritmos de k-vecino mas cercano para dicha investigacion, cuyo
resultado del modelo propuesto logr6 una precision de clasificacion del 70% al 75% de relacion
efectiva positiva.

También lo confirma la investigacion realizada por Gismondi (2021) titulado “Modelo
predictivo basado en machine learning como soporte para el seguimiento académico del
estudiante universitario”, cuya finalidad fue mejorar los resultados en la educacion
universitaria, proponiendo aplicar la inteligencia artificial, machine learning y Deep learning a

través de una red neuronal de seis capas con un 98.97% de precision en el entrenamiento y
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81.73 de precision en el conjunto de prueba, estableciendo de relacion efectiva positiva muy

alta.

De la misma manera el estudio realizado por Quifiones y Quiniones (2020)"Rendimiento

académico mediante mineria de datos" consistio en utilizar técnicas de mineria de datos para

predecir el rendimiento académico de los alumnos matriculados en la carrera de Ingenieria en

Industrias Alimentarias de la Universidad Nacional de Jaén (UNJ). Las oficinas de la

universidad y un fichero proporcionaron acceso a la base de datos. CRISP-DM fue la

metodologia empleada. Los tres algoritmos de categorizacion del software Weka produjeron

predicciones con una fiabilidad superior al 83%.

Conclusiones

1.

Conforme al objetivo general en determinar el nivel de relacion entre la productividad
educativa y los algoritmos de aprendizaje automatico, se determiné estadisticamente que
existe una correlacion positiva muy alta, debido al valor del coeficiente de correlacion de
Spearman que fue de 0,940 y conforme al baremo de significancia del valor hallado; Por
tanto, se destaca que los algoritmos de aprendizaje automatico (arboles de decision,
random fores y naive bayes) demostraron un alto grado de precision en la prediccion de la
productividad educativa respaldado por el Rho de Spearman.

En cuanto al objetivo especifico referente al nivel de relacion entre la dimensién aptitud y
los algoritmos de aprendizaje automatico, se determiné estadisticamente que existe una
correlacion positiva alta debido al valor del coeficiente de correlacién de Spearman que fue
de 0,801y el baremo de significancia del valor hallado.

En relacion al objetivo especifico del nivel de relaciéon entre la dimensién instruccion y los
algoritmos de aprendizaje automaético, se establecié estadisticamente una correlacion
positiva alta debido al valor del coeficiente de correlacién de Spearman que fue de 0,723 y
el baremo de significancia del valor hallado.

En cuanto al objetivo especifico concerniente al nivel de relacion entre la dimensiéon medio
ambiente y los algoritmos de aprendizaje automaético, se especificd estadisticamente una
correlacion positiva moderada debido al valor del coeficiente de correlacion de Spearman
que fue de 0,626 y el baremo de significancia del valor hallado.

Respecto al objetivo especifico del nivel de relacion entre la dimensién aprendizaje y los
algoritmos de aprendizaje automatico, se analiz6 estadisticamente en donde se determiné
el coeficiente de correlacion de Spearman en 0,811 y de acuerdo al baremo de significancia

se estableci6 una correlacion positiva alta.
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Recomendaciones

1.

La recomendacion en el &mbito general recae en promover la implementacion y uso de
algoritmos de aprendizaje automatico en el ambito educativo de EPISI de UNAM, con el
objetivo de mejorar la productividad educativa, debido a la alta correlacion positiva
existente entre dichas variables. Ademas, recomendar a la vice presidencia académica,
decano de ingenieria, jefe de departamento y direccién de EPISI de UNAM brindar el apoyo
correspondiente en la asignacion de recursos y capacitaciones tanto a estudiantes, docentes
y personal involucrado fortaleciendo de esta forma habilidades en el uso y comprensién de
los algoritmos de aprendizaje automético (AAA), con la finalidad de lograr mejores niveles
de confianza en los AAA, integrar a los sistemas automatizados existentes para una mejor
gestion educativa.

Con referencia a la dimension aptitud y los algoritmos de aprendizaje automatico, se
encontr6 una correlacion positiva alta, por tanto, se recomienda continuar con el
fortalecimiento de los datos a fin de mejorar el rendimiento predictivo de los AAA, esto
significa incrementar la data historia personalizada, para ello se sugiere a los directivos y
autoridades mencionados asignar recursos y capacitaciones a EPISI basado en
especializacion en inteligencia artificial y Big Data a fin de lograr establecer estrategias y
politicas de almacenamiento de datos del modelo inteligente en los servidores de UNAM,
para una mejor gestion académica.

Respecto a la dimension instruccion y los algoritmos de aprendizaje automatico se obtuvo
una correlacién alta para lo cual también recomienda ampliar los datos historicos con la
finalidad de mejorar las predicciones de los AAA para ello se sugiere a los directivos y
autoridades mencionados asignar recursos y capacitaciones a EPISI basado en
especializacion en inteligencia artificial y Big Data a fin de lograr establecer estrategias y
politicas de almacenamiento de datos del modelo inteligente en los servidores de UNAM,
para una mejor gestion académica.

Respecto a la dimension medio ambiente y los algoritmos de aprendizaje automatico se
obtuvo una correlaciéon positiva moderada para lo cual se recomienda mejorar la
ampliacion de los datos historicos a fin de mejorar las predicciones de los algoritmos de
aprendizaje automaético para ello se sugiere a los directivos y autoridades mencionados
asignar recursos y capacitaciones en Inteligencia artificial y Big Data a fin de establecer
estrategias de almacenamiento de datos en los servidores de UNAM, para una mejor

gestion académica.
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5. Respecto a la dimensién aprendizaje y los algoritmos de aprendizaje automatico se obtuvo
una correlacion positiva alta para lo cual se recomienda mejorar la ampliacién de los datos
historicos a fin de mejorar las predicciones de los algoritmos de aprendizaje automatico
para ello se sugiere a los directivos y autoridades mencionados asignar recursos y
capacitaciones en Inteligencia artificial y Big Data a fin de establecer estrategias de

almacenamiento de datos en los servidores de UNAM, para una mejor gestién académica.
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