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Resumen 

Este capítulo presenta los resultados y análisis de la investigación sobre la relación entre la 

productividad educativa y los algoritmos de aprendizaje automático. El análisis descriptivo 

detalla las percepciones de los 90 estudiantes encuestados sobre dimensiones como aptitud, 

instrucción, medio ambiente y aprendizaje. El análisis inferencial, mediante la prueba Rho de 

Spearman, revela una correlación positiva muy alta (0.940) entre ambas variables, 

confirmando todas las hipótesis específicas. Se concluye que los algoritmos (Decision Trees, 

Random Forest, Naive Bayes) son predictores efectivos de la productividad educativa, 

validando estudios previos. 

Palabras clave: Resultados, Correlación, Rho de Spearman, Análisis Inferencial, 

Productividad Educativa, Aprendizaje Automático. 

 

Abstract 

This chapter presents the results and analysis of the research on the relationship between 

educational productivity and machine learning algorithms. The descriptive analysis details the 

perceptions of the 90 surveyed students regarding dimensions such as aptitude, instruction, 

environment, and learning. The inferential analysis, using Spearman's Rho test, reveals a very 

high positive correlation (0.940) between both variables, confirming all specific hypotheses. It 

is concluded that the algorithms (Decision Trees, Random Forest, Naive Bayes) are effective 

predictors of educational productivity, validating previous studies. 

Keywords: Results, Correlation, Spearman's Rho, Inferential Analysis, Educational 

Productivity, Machine Learning. 

 

Análisis descriptivo  

Luego de la aplicación de la herramienta de recolección de datos, se realizó el procesamiento 

necesario para analizar los datos. En este punto, se analizaron internamente todos los 

indicadores suministrados por la EPISI de la (UNAM. 
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Descripción de encuestados 

Tabla 2  

Totalidad de encuestados por genero 

 Frecuencia Porcentaje 
Porcentaje 

válido 

Porcentaje 

acumulado 

Válido 

Masculino 67 74.4 74.4 74.4 

Femenino 23 25.6 25.6 100.0 

Total 90 100.0 100.0  

Nota: En la tabla podemos observar la distribución de encuestados por frecuencia de 

género, de ellos 67 son Masculinos y 23 Femeninos que representan el 74.4% y  23% 

respectivamente en la presente investigación. 

Figura 6 

Encuestados según genero 

 

Nota:  La figura describe porcentualmente la muestra de representativa de los alumnos de 

la EPISI de la UNAM según genero considerado en la presente investigación. 

 

Variable 1: productividad educativa 

Tabla 3 

Pregunta 1. Utilizo los recursos académicos disponibles para mis conocimientos 

 Frecuencia Porcentaje 

Porcentaje 

válido 

Porcentaje 

acumulado 

Nunca 6 6,7 6,7 6,7 
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Váli

do 

Rara Vez 25 27,8 27,8 34,4 

Algunas Veces 26 28,9 28,9 63,3 

Casi Siempre 25 27,8 27,8 91,1 

Siempre 8 8,9 8,9 100,0 

Total 90 100,0 100,0  

Nota: Elaboración propia a partir de SPSS versión 26.  

 

Figura 7 

Pregunta 1. Utilizo los recursos académicos disponibles para mis conocimientos 

 

Nota: Distribución porcentual de la pregunta 1. 

 

Interpretación: 

De acuerdo a la pregunta 1, acerca del uso de los recursos académicos disponibles para sus 

conocimientos podemos mencionar que 28.9% (26 encuestados) mencionan algunas veces, 

27.8% (25 encuestados) mencionan casi siempre y rara vez, 8.9% (8 encuestado) mencionan 

siempre y 6.7% (6 encuestados) mencionan no utilizan. 

Tabla 4 

Pregunta 2. Planifico mis estudios académicos en la universidad 

 Frecuencia Porcentaje 
Porcentaje 

válido 

Porcentaje 

acumulado 

Válido Nunca 6 6,7 6,7 6,7 

Rara Vez 29 32,2 32,2 38,9 

Algunas Veces 18 20,0 20,0 58,9 
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Casi Siempre 29 32,2 32,2 91,1 

Siempre 8 8,9 8,9 100,0 

Total 90 100,0 100,0  

Nota: Elaboración propia a partir de SPSS versión 26.  

 

Figura 8 

Pregunta 2. Planifico mis estudios académicos en la universidad 

 

Nota: Distribución porcentual de la pregunta 2. 

Interpretación: 

De acuerdo a la pregunta 2, acerca de la planificación de estudios en la universidad podemos 

mencionar que 32.2% (29 encuestados) mencionan rara vez y casi siempre, el 20% (18 

encuestados) mencionan algunas veces, el 8.9% (8 encuestados) mencionan siempre y 6.7% (6 

encuestados) mencionan nunca. 

 

Tabla 5 

Pregunta 3: Los docentes felicitan mis esfuerzos académicos 

 Frecuencia Porcentaje 
Porcentaje 

válido 

Porcentaje 

acumulado 

Válido Nunca 2 2,2 2,2 2,2 

Rara Vez 11 12,2 12,2 14,4 

Algunas Veces 26 28,9 28,9 43,3 

Casi Siempre 40 44,4 44,4 87,8 
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Siempre 11 12,2 12,2 100,0 

Total 90 100,0 100,0  

Nota: Elaboración propia a partir de SPSS versión 26.  

Figura 9 

Pregunta 3: Los docentes felicitan mis esfuerzos académicos 

 

Nota: Distribución porcentual de la pregunta 3. 

Interpretación: 

De acuerdo a la pregunta 3, referente al elogio establecido por los docentes al esfuerzo 

académico podemos mencionar que 44.4% (40 encuestados) mencionan casi siempre, el 28.9% 

(26 encuestados) mencionan algunas veces, mientras que el 12.2% (11 encuestados) mencionan 

rara vez y siempre y 2.2% (2 encuestados) mencionan nunca. 

Tabla 6 

Pregunta 4: Comprendo las sesiones de aprendizaje 

 Frecuencia Porcentaje 
Porcentaje 

válido 

Porcentaje 

acumulado 

Válido Nunca 2 2,2 2,2 2,2 

Rara Vez 10 11,1 11,1 13,3 

Algunas Veces 32 35,6 35,6 48,9 

Casi Siempre 40 44,4 44,4 93,3 

Siempre 6 6,7 6,7 100,0 

Total 90 100,0 100,0  

Nota: Elaboración propia a partir de SPSS versión 26.  
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Figura 10 

Pregunta 4: Comprendo las sesiones de aprendizaje 

 

Nota: Distribución porcentual de la pregunta 4. 

 

Interpretación: 

De acuerdo a la pregunta 4, acerca de la comprensión de las sesiones de aprendizaje 

mencionan que el 44.4% (40 encuestados) mencionan casi siempre, 35.6% (32 encuestados) 

mencionan algunas veces, 11.1% (10 encuestado) mencionan rara vez, 6.7% (6 encuestado) 

siempre y 2.2% (2 encuestados) mencionan nunca. 

 

Tabla 7 

Pregunta 5: Planifico mis tareas académicas 

 
Frecuencia Porcentaje 

Porcentaje 

válido 

Porcentaje 

acumulado 

Válido Nunca 2 2,2 2,2 2,2 

Rara Vez 16 17,8 17,8 20,0 

Algunas Veces 38 42,2 42,2 62,2 

Casi Siempre 27 30,0 30,0 92,2 

Siempre 7 7,8 7,8 100,0 

Total 90 100,0 100,0  

Nota: Elaboración propia a partir de SPSS versión 26.  
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Figura 11 

Pregunta 5: Planifico mis trabajos académicos 

 

Nota: Distribución porcentual de la pregunta 5. 

Interpretación: 

De acuerdo a la pregunta 5, acerca de la planificación de las tareas académicas mencionan 

que el 42.2% (38 encuestados) mencionan algunas veces, el 30.0% (27 encuestados) 

mencionan casi siempre, 17.8% (16 encuestado) mencionan rara vez, 7.8% (7 encuestado) 

siempre y 2.2% (2 encuestados) mencionan nunca. 

Tabla 8 

Pregunta 6: Utilizo la biblioteca para ampliar mis conocimientos 

 Frecuencia Porcentaje 

Porcentaje 

válido 

Porcentaje 

acumulado 

Válid

o 

Nunca 2 2,2 2,2 2,2 

Rara Vez 19 21,1 21,1 23,3 

Algunas Veces 46 51,1 51,1 74,4 

Casi Siempre 18 20,0 20,0 94,4 

Siempre 5 5,6 5,6 100,0 

Total 90 100,0 100,0  

Nota: Elaboración propia a partir de SPSS versión 26.  
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Figura 12 

Pregunta 6: Utilizo la biblioteca para ampliar mis conocimientos 

 

Nota: Distribución porcentual de la pregunta 6. 

Interpretación: 

De acuerdo a la pregunta 6, acerca del uso de la biblioteca para ampliar los conocimientos 

mencionan que el 51.1% (46 encuestados) mencionan algunas veces, el 21.1% (19 encuestados) 

mencionan rara vez, el 20% (18 encuestados) mencionan casi siempre, el 5.6% (5 encuestados) 

siempre y el 2.2% (2 encuestados) mencionan nunca. 

 

Tabla 9 

Pregunta 7: Mis padres apoyan en mis conocimientos académicos 

 Frecuencia Porcentaje 

Porcentaje 

válido 

Porcentaje 

acumulado 

Válido Nunca 22 24,4 24,4 24,4 

Rara Vez 28 31,1 31,1 55,6 

Algunas Veces 24 26,7 26,7 82,2 

Casi Siempre 6 6,7 6,7 88,9 

Siempre 10 11,1 11,1 100,0 

Total 90 100,0 100,0  

Nota: Elaboración propia a partir de SPSS versión 26.  
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Figura 13 

Pregunta 7: Mis padres apoyan en mis conocimientos académicos 

 

Nota: Distribución porcentual de la pregunta 7. 

Interpretación: 

De acuerdo a la pregunta 7, acerca del apoyo de los padres en el conocimiento académico 

mencionan que el 31.1% (28 encuestados) mencionan rara vez, luego el 26.7% (24 encuestados) 

mencionan algunas veces, el 24.4% (22 encuestados) mencionan nunca, el 11.1% (10 

encuestado) siempre y el 6.7% (6 encuestados) mencionan casi siempre. 

 

Tabla 10 

Pregunta 8: Utilizo equipos y herramientas académicas de casa para estudiar 

 Frecuencia Porcentaje 

Porcentaje 

válido 

Porcentaje 

acumulado 

Válido Nunca 2 2,2 2,2 2,2 

Rara Vez 24 26,7 26,7 28,9 

Algunas Veces 21 23,3 23,3 52,2 

Casi Siempre 30 33,3 33,3 85,6 

Siempre 13 14,4 14,4 100,0 

Total 90 100,0 100,0  

Nota: Elaboración propia a partir de SPSS versión 26.  
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Figura 14 

Pregunta 8: Utilizo equipos y herramientas académicas de casa para estudiar 

 

Nota: Distribución porcentual de la pregunta 8. 

Interpretación: 

De acuerdo a la pregunta 8, acerca del uso de equipos y herramientas académicas para 

estudiar mencionan que el 33.3% (30 encuestados) mencionan casi siempre, mientras que el 

26.7% (24 encuestados) mencionan rara vez, el 23.3% (21 encuestados) mencionan algunas 

veces, el 14.4% (13 encuestados) mencionan siempre y el 2.2% (2 encuestados) mencionan 

nunca. 

 

Tabla 11 

Pregunta 9: Recibo apoyo financiero familiar para mis estudios 

 Frecuencia Porcentaje 

Porcentaje 

válido 

Porcentaje 

acumulado 

Válido Nunca 10 11,1 11,1 11,1 

Rara Vez 19 21,1 21,1 32,2 

Algunas Veces 37 41,1 41,1 73,3 

Casi Siempre 16 17,8 17,8 91,1 

Siempre 8 8,9 8,9 100,0 

Total 90 100,0 100,0  

Nota: Elaboración propia a partir de SPSS versión 26.  
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Figura 15 

Pregunta 9: Recibo apoyo financiero familiar para mis estudios 

 

Nota: Distribución porcentual de la pregunta 9. 

 

 

Interpretación: 

De acuerdo a la pregunta 9, acerca del apoyo financiero para sus estudios mencionan que el 

41.1% (37 encuestados) mencionan algunas veces, mientras que el 21.1% (19 encuestados) 

mencionan rara vez, el 17.8% (16 encuestados) mencionan casi siempre, el 11.1% (10 

encuestados) mencionan nunca y el 8.9% (8 encuestados) mencionan siempre. 

 

Tabla 12 

Pregunta 10: Realizo desenvolvimiento social con mis vecinos 

 Frecuencia Porcentaje 

Porcentaje 

válido 

Porcentaje 

acumulado 

Válido Nunca 6 6,7 6,7 6,7 

Rara Vez 13 14,4 14,4 21,1 

Algunas Veces 37 41,1 41,1 62,2 

Casi Siempre 24 26,7 26,7 88,9 

Siempre 10 11,1 11,1 100,0 

Total 90 100,0 100,0  

Nota: Elaboración propia a partir de SPSS versión 26.  
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Figura 16 

Pregunta 10: Realizo desenvolvimiento social con mis vecinos 

 

Nota: Distribución porcentual de la pregunta 10. 

Interpretación: 

De acuerdo a la pregunta 10, acerca del desenvolvimiento social con los vecinos del 

encuestado manifiestan que el 41.1% (37 encuestados) mencionan algunas veces, mientras que 

el 26.7% (24 encuestados) mencionan casi siempre, el 14.4% (13 encuestados) mencionan rar 

vez, el 11.1% (10 encuestados) mencionan siempre y el 6.7% (6 encuestados) mencionan nunca. 

 

Tabla 13 

Pregunta 11: Participo en actividades deportivas en mi barrio 

 Frecuencia Porcentaje 

Porcentaje 

válido 

Porcentaje 

acumulado 

Válido Nunca 7 7,8 7,8 7,8 

Rara Vez 19 21,1 21,1 28,9 

Algunas Veces 36 40,0 40,0 68,9 

Casi Siempre 21 23,3 23,3 92,2 

Siempre 7 7,8 7,8 100,0 

Total 90 100,0 100,0  

Nota: Elaboración propia a partir de SPSS versión 26.  
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Figura 17 

Pregunta 11: Participo en actividades deportivas en mi barrio 

 

Nota: Distribución porcentual de la pregunta 11. 

 

Interpretación: 

De acuerdo a la pregunta 11, acerca de la participación en actividades deportivas en sus 

barrios manifiestan que el 40% (36 encuestados) mencionan algunas veces, mientras que el 

23.3% (21 encuestados) mencionan casi siempre, el 19% (19 encuestados) mencionan rar vez, 

el 7.8% (7 encuestados) mencionan siempre y nunca. 

Tabla 14 

Pregunta 12: Participo en actividades comunitarias con los conocimientos adquiridos 

 Frecuencia Porcentaje 

Porcentaje 

válido 

Porcentaje 

acumulado 

Válido Nunca 8 8,9 8,9 8,9 

Rara Vez 31 34,4 34,4 43,3 

Algunas Veces 29 32,2 32,2 75,6 

Casi Siempre 20 22,2 22,2 97,8 

Siempre 2 2,2 2,2 100,0 

Total 90 100,0 100,0  

Nota: Elaboración propia a partir de SPSS versión 26.  
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Figura 18 

Pregunta 12: Participo en actividades comunitarias con los conocimientos adquiridos 

 

Nota: Distribución porcentual de la pregunta 12. 

Interpretación: 

De acuerdo a la pregunta 12, acerca de la participación en actividades comunitarias con los 

conocimientos adquiridos manifiestan que el 34.4% (31 encuestados) mencionan rara vez, 

mientras que el 32.2% (29 encuestados) mencionan algunas veces, el 22.2% (20 encuestados) 

mencionan casi siempre, el 8.9% (8 encuestados) mencionan nunca y el 2.2% (2 encuestados) 

mencionaron siempre. 

 

Tabla 15 

Pregunta 13: Los medios de comunicación apoyan el desarrollo de mis conocimientos 

 Frecuencia Porcentaje 

Porcentaje 

válido 

Porcentaje 

acumulado 

Válido Nunca 10 11,1 11,1 11,1 

Rara Vez 41 45,6 45,6 56,7 

Algunas Veces 19 21,1 21,1 77,8 

Casi Siempre 17 18,9 18,9 96,7 

Siempre 3 3,3 3,3 100,0 

Total 90 100,0 100,0  

Nota: Elaboración propia a partir de SPSS versión 26.  

 

 



96 

 

Figura 19 

Pregunta 13: Los medios de comunicación apoyan el desarrollo de mis conocimientos  

 

Nota: Distribución porcentual de la pregunta 13. 

 

Interpretación: 

De acuerdo a la pregunta 13, acerca de los aportes de medios de comunicación en el 

desarrollo del conocimiento manifiestan que el 45.6% (41 encuestados) mencionan rara vez, 

mientras que el 21.1% (19 encuestados) mencionan algunas veces, el 18.9% (17 encuestados) 

mencionan casi siempre, el 11.1% (10 encuestados) mencionan nunca y el 3.3% (3 encuestados) 

mencionaron siempre. 

Tabla 16 

Pregunta 14: Planifico mis actividades académicas constantemente 

 Frecuencia Porcentaje 

Porcentaje 

válido 

Porcentaje 

acumulado 

Válido Nunca 2 2,2 2,2 2,2 

Rara Vez 16 17,8 17,8 20,0 

Algunas Veces 38 42,2 42,2 62,2 

Casi Siempre 27 30,0 30,0 92,2 

Siempre 7 7,8 7,8 100,0 

Total 90 100,0 100,0  

Nota: Elaboración propia a partir de SPSS versión 26.  
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Figura 20 

Pregunta 14: Planifico mis actividades académicas constantemente 

 

Nota: Distribución porcentual de la pregunta 14. 

Interpretación: 

De acuerdo a la pregunta 14, acerca de planificar los estudios constantemente manifiestan 

que el 42.2.6% (38 encuestados) mencionan algunas veces, mientras que el 30% (27 

encuestados) mencionan casi siempre, el 17.8% (16 encuestados) mencionan rara vez, el 7.8% 

(7 encuestados) mencionan siempre y el 2.2% (2 encuestados) mencionaron nunca. 

 

Tabla 17 

Pregunta 15: Planifico el uso de TICs para mis estudios e investigaciones 

 Frecuencia Porcentaje 

Porcentaje 

válido 

Porcentaje 

acumulado 

Válido Rara Vez 9 10,0 10,0 10,0 

Algunas Veces 14 15,6 15,6 25,6 

Casi Siempre 36 40,0 40,0 65,6 

Siempre 31 34,4 34,4 100,0 

Total 90 100,0 100,0  

Nota: Elaboración propia a partir de SPSS versión 26.  
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Figura 21 

Pregunta 15: Planifico el uso de TICs para mis estudios e investigaciones 

 

Nota: Distribución porcentual de la pregunta 15. 

 

Interpretación: 

De acuerdo a la pregunta 15, acerca de planificar el uso de TICs para estudios e 

investigaciones manifiestan que el 40% (36 encuestados) mencionan casi siempre, mientras 

que el 34.4% (31 encuestados) mencionan siempre, el 15.6% (14 encuestados) mencionan 

algunas veces y el 10% (9 encuestados) mencionan rara vez. 

 

Tabla 18 

Pregunta 16: Planifico realizar proyectos de emprendimiento académico 

 Frecuencia Porcentaje 

Porcentaje 

válido 

Porcentaje 

acumulado 

Válido Nunca 18 20,0 20,0 20,0 

Rara Vez 12 13,3 13,3 33,3 

Algunas Veces 21 23,3 23,3 56,7 

Casi Siempre 28 31,1 31,1 87,8 

Siempre 11 12,2 12,2 100,0 

Total 90 100,0 100,0  

Nota: Elaboración propia a partir de SPSS versión 26.  
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Figura 22 

Pregunta 16: Planifico realizar proyectos de emprendimiento académico 

 

Nota: Distribución porcentual de la pregunta 16. 

Interpretación: 

De acuerdo a la pregunta 16, acerca de planificar proyectos de emprendimiento académico 

manifiestan que el 31.1% (28 encuestados) mencionan casi siempre, mientras que el 23.3% (21 

encuestados) mencionan algunas veces, el 20% (18 encuestados) mencionan nunca, el 13.3% 

(12 encuestados) mencionan rara vez y el 12.2% (11 encuestados) mencionan siempre. 

 

Tabla 19 

Pregunta 17: Existe socialización académica con los docentes 

 Frecuencia Porcentaje 

Porcentaje 

válido 

Porcentaje 

acumulado 

Válido Nunca 6 6,7 6,7 6,7 

Rara Vez 30 33,3 33,3 40,0 

Algunas Veces 32 35,6 35,6 75,6 

Casi Siempre 17 18,9 18,9 94,4 

Siempre 5 5,6 5,6 100,0 

Total 90 100,0 100,0  

Nota: Elaboración propia a partir de SPSS versión 26.  
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Figura 23 

Pregunta 17: Existe socialización académica con los docentes 

 

Nota: Distribución porcentual de la pregunta 17. 

 

Interpretación: 

De acuerdo a la pregunta 17, acerca de la socialización académica con los docentes 

manifiestan que el 35.6% (32 encuestados) mencionan algunas veces, mientras que el 33.3% 

(30 encuestados) mencionan rara vez, el 18.9% (17 encuestados) mencionan casi siempre, el 

6.7% (6 encuestados) mencionan nunca y el 5.6% (5 encuestados) mencionan siempre. 

 

Tabla 20 

Pregunta 18: Existe satisfacción académica en mi experiencia universitaria 

 Frecuencia Porcentaje 

Porcentaje 

válido 

Porcentaje 

acumulado 

Válido Nunca 2 2,2 2,2 2,2 

Rara Vez 16 17,8 17,8 20,0 

Algunas Veces 35 38,9 38,9 58,9 

Casi Siempre 33 36,7 36,7 95,6 

Siempre 4 4,4 4,4 100,0 

Total 90 100,0 100,0  

Nota: Elaboración propia a partir de SPSS versión 26.  

 

Figura 24 

Pregunta 18: Existe satisfacción académica en mi experiencia universitaria 
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Nota: Distribución porcentual de la pregunta 18. 

 

Interpretación: 

De acuerdo a la pregunta 18, acerca de la satisfacción académica como experiencia 

universitaria en general manifiestan que el 38.9% (35 encuestados) mencionan algunas veces, 

mientras que el 36.7% (33 encuestados) mencionan casi siempre, el 17.8% (16 encuestados) 

mencionan rara vez, el 4.4% (4 encuestados) mencionan siempre y el 2.2% (2 encuestados) 

mencionan nunca. 

 

Tabla 21 

Pregunta 19: El nivel de logro de aprendizaje es satisfactorio   

 Frecuencia Porcentaje 

Porcentaje 

válido 

Porcentaje 

acumulado 

Válido Insuficie

nte 

12 13.3 13.3 13.3 

Aprobado 64 71.1 71.1 84.4 

Bueno 14 15.6 15.6 100.0 

Total 90 100.0 100.0  

Nota: Elaboración propia a partir de SPSS versión 26.  
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Figura 25 

Pregunta 19: El nivel de logro de aprendizaje es satisfactorio   

 

Nota: Distribución porcentual de la pregunta 19. 

Interpretación: 

Conforme a la pregunta 19, acerca del logro de aprendizaje obtenido, en general manifiestan 

que el 13.3% (12 encuestados) mencionan rara vez, mientras que el 71.1% (64 encuestados) 

mencionan algunas veces y el 15.6% (14 encuestados) mencionan que el logro fue casi siempre. 

 

Variable 2: algoritmos de aprendizaje automático  

Tabla 22 

P01: Aprendizaje dimensión actitud del algoritmo arboles de decisión  

 

Frecuencia Porcentaje 

Porcentaje 

válido 

Porcentaje 

acumulado 

Valido Rara vez 9 10.0 10.0 10.0 

Algunas veces 52 57.8 57.8 67.8 

Casi siempre 29 32.2 32.2 100.0 

Total 90 100,0 100,0  

Nota: Elaboración propia a partir de SPSS versión 26.  
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Figura 26 

P01: Aprendizaje dimensión actitud del algoritmo arboles de decisión  

 

Nota: Distribución porcentual de la pregunta 01. 

 

 

Interpretación: 

De acuerdo al criterio 01, referente al aprendizaje en la dimensión actitud del algoritmo 

arboles de decisión establece que el 57.8% (52 encuestados) mencionan algunas veces, 

mientras que el 32.2% (29 encuestados) mencionan casi siempre y el 10% (9 encuestados) 

mencionan rara vez. 

 

Tabla 23 

P02: Aprendizaje dimensión medio ambiente del algoritmo arboles de decisión 

 Frecuencia Porcentaje 

Porcentaj

e válido 

Porcentaje 

acumulado 

Válido Rara vez 15 16.7 16.7 16.7 

Algunas veces 62 68.9 68.9 85.6 

Casi siempre 13 14.4 14.4 100.0 

Total 90 100,0 100,0  

Nota: Elaboración propia a partir de SPSS versión 26. 
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Figura 27 

P02: Aprendizaje dimensión medio ambiente del algoritmo arboles de decisión 

 

Nota: Distribución porcentual de la pregunta 02. 

 

Interpretación: 

De acuerdo al criterio 02, referente al aprendizaje en la dimensión medio ambiente del 

algoritmo arboles de decisión establece que el 68.9% (62 encuestados) mencionan algunas 

veces, mientras que el 16.7% (15 encuestados) mencionan rara vez y el 14.4% (13 encuestados) 

mencionan casi siempre. 

 

Tabla 24 

P03: Aprendizaje dimensión instrucción del algoritmo arboles de decisión 

 Frecuencia Porcentaje 

Porcentaje 

válido 

Porcentaje 

acumulado 

Válido Rara vez 7 7.8 7.8 7.8 

Algunas veces 68 75.6 75.6 83.3 

Casi siempre 15 16.7 16.7 100.0 

Total 90 100,0 100,0  

Nota: Elaboración propia a partir de SPSS versión 26.  
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Figura 28 

P03: Aprendizaje dimensión instrucción del algoritmo arboles de decisión 

 

Nota: Distribución porcentual de la pregunta 03. 

 

Interpretación: 

De acuerdo al criterio 03, referente al aprendizaje en la dimensión instrucción del algoritmo 

arboles de decisión establece que el 75.6% (68 encuestados) mencionan algunas veces, 

mientras que el 16.7% (15 encuestados) mencionan casi siempre y el 7.8% (7 encuestados) 

mencionan rara vez. 

 

Tabla 25 

P04: Aprendizaje Logro del algoritmo arboles de decisión 

 Frecuencia Porcentaje 

Porcentaje 

válido 

Porcentaje 

acumulado 

Válido Rara vez 12 13.3 13.3 13.3 

Algunas 

veces 

64 71.1 71.1 84.4 

Casi 

siempre 

14 15.6 15.6 100.0 

Total 90 100.0 100.0  

Nota: Elaboración propia a partir de SPSS versión 26.  
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Figura 29 

P04: Aprendizaje Logro del algoritmo arboles de decisión 

 

Nota: Distribución porcentual de la pregunta 04. 

Interpretación: 

De acuerdo al criterio 04, referente al aprendizaje en la dimensión logro del algoritmo 

arboles de decisión establecen que el 13.3% (12 encuestados) mencionan rara vez, mientras que 

el 71.1% (64 encuestados) mencionan algunas veces y el 15.6% (14 encuestados) casi siempre. 

 

Tabla 26 

P05: Asertividad dimensión aptitud del algoritmo arboles de decisión 

 

 Frecuencia Porcentaje 

Porcentaje 

válido 

Porcentaje 

acumulado 

Válido Rara vez 12 13.3 13.3 13.3 

Algunas veces 49 54.4 54.4 67.8 

Casi siempre 29 32.2 32.2 100.0 

Total 90 100,0 100,0  

Nota: Elaboración propia a partir de SPSS versión 26.  
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Figura 30 

P05: Asertividad dimensión aptitud del algoritmo arboles de decisión 

 

Nota: Distribución porcentual de la pregunta 05. 

 

Interpretación: 

De acuerdo al criterio 05, de asertividad en la dimensión aptitud del algoritmo arboles de 

decisión establece que el 54.4% (49 encuestados) mencionan algunas veces, mientras que el 

32.2% (29 encuestados) mencionan casi siempre y el 13.3% (12 encuestados) mencionan rara 

vez. 

 

Tabla 27 

P06: Asertividad dimensión medio ambiente del algoritmo arboles de decisión 

 Frecuencia Porcentaje 

Porcentaje 

válido 

Porcentaje 

acumulado 

Válido Rara vez 20 22.2 22.2 22.2 

Algunas veces 57 63.3 63.3 85.6 

Casi siempre 13 14.4 14.4 100.0 

Total 90 100,0 100,0  

Nota: Elaboración propia a partir de SPSS versión 26.  
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Figura 31 

P06: Asertividad dimensión medio ambiente del algoritmo arboles de decisión 

 

Nota: Distribución porcentual de la pregunta 05. 

 

 

Interpretación: 

De acuerdo al criterio 06, de asertividad en la dimensión medio ambiente del algoritmo 

arboles de decisión establece que el 63.3% (57 encuestados) mencionan algunas veces, mientras 

que el 22.2% (20 encuestados) mencionan rara vez y el 14.4% (13 encuestados) mencionan casi 

siempre. 

 

Tabla 28 

P07: Asertividad dimensión instrucción del algoritmo arboles de decisión 

 Frecuencia Porcentaje 

Porcentaje 

válido 

Porcentaje 

acumulado 

Válido Rara vez 7 7.8 7.8 7.8 

Algunas veces 68 75.6 75.6 83.3 

Casi siempre 15 16.7 16.7 100.0 

Total 90 100,0 100,0  

Nota: Elaboración propia a partir de SPSS versión 26.  
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Figura 32 

P07: Asertividad dimensión instrucción del algoritmo arboles de decisión 

 

Nota: Distribución porcentual de la pregunta 07. 

 

 

Interpretación: 

De acuerdo al criterio 07, de asertividad en la dimensión instrucción del algoritmo arboles 

de decisión establece que el 75.6% (68 encuestados) menciona algunas veces, mientras que el 

16.7% (15 encuestados) menciona casi siempre y el 7.8% (7 encuestados) menciona rara. 

 

Tabla 29 

P08: Asertividad dimensión logro del algoritmo arboles de decisión 

 Frecuencia Porcentaje 

Porcentaje 

válido 

Porcentaje 

acumulado 

Válido Rara vez 12 13.3 13.3 13.3 

Algunas veces 64 71.1 71.1 84.4 

Casi siempre 14 15.6 15.6 100.0 

Total 90 100.0 100.0  

Nota: Elaboración propia a partir de SPSS versión 26.  
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Figura 33 

P08: Asertividad dimensión logro del algoritmo arboles de decisión 

 

Nota: Distribución porcentual de la pregunta 08. 

 

Interpretación: 

De acuerdo al criterio 08, de asertividad en la dimensión logro del algoritmo arboles de 

decisión establece que el 13.3% (12 encuestados) menciona rara vez, mientras que el 71.1% (54 

encuestados) menciona algunas veces y el 15.8.8% (14 encuestados) casi siempre. 

 

Tabla 30 

P09: Aprendizaje dimensión aptitud del algoritmo Naive Bayes 

 

Frecuencia Porcentaje 

Porcentaje 

válido 

Porcentaje 

acumulado 

Valido Rara vez 9 10.0 10.0 10.0 

Algunas veces 52 57.8 57.8 67.8 

Casi siempre 29 32.2 32.2 100.0 

Total 90 100,0 100,0  

Nota: Elaboración propia a partir de SPSS versión 26.  
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Figura 34 

P09: Aprendizaje dimensión aptitud del algoritmo Naive Bayes 

 

Nota: Distribución porcentual de la pregunta 09. 

 

Interpretación: 

De acuerdo al criterio 09, referente al aprendizaje en la dimensión aptitud del algoritmo 

Naive Bayes establece que el 57.8% (52 encuestados) mencionan algunas veces, mientras que 

el 32.2% (29 encuestados) mencionan casi siempre y el 10% (9 encuestados) mencionan rara 

vez. 

 

Tabla 31 

P010: Aprendizaje dimensión medio ambiente del algoritmo Naive Bayes 

 Frecuencia Porcentaje 

Porcentaj

e válido 

Porcentaje 

acumulado 

Válido Rara vez 15 16.7 16.7 16.7 

Algunas veces 62 68.9 68.9 85.6 

Casi siempre 13 14.4 14.4 100.0 

Total 90 100,0 100,0  

Nota: Elaboración propia a partir de SPSS versión 26.  
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Figura 35 

P010: Aprendizaje dimensión medio ambiente del algoritmo Naive Bayes 

 

Nota: Distribución porcentual de la pregunta 010. 

 

Interpretación: 

De acuerdo al criterio 010, referente al aprendizaje en la dimensión medio ambiente del 

algoritmo Naive Bayes establece que el 68.9% (62 encuestados) mencionan algunas veces, 

mientras que el 16.7% (15 encuestados) mencionan rara vez y el 14.4% (13 encuestados) 

mencionan casi siempre. 

 

Tabla 32 

P011: Aprendizaje dimensión instrucción del algoritmo Naive Bayes 

 Frecuencia Porcentaje 

Porcentaje 

válido 

Porcentaje 

acumulado 

Válido Rara vez 7 7.8 7.8 7.8 

Algunas veces 68 75.6 75.6 83.3 

Casi siempre 15 16.7 16.7 100.0 

Total 90 100,0 100,0  

Nota: Elaboración propia a partir de SPSS versión 26.  
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Figura 36 

P011: Aprendizaje dimensión instrucción del algoritmo Naive Bayes 

 

Nota: Distribución porcentual de la pregunta 011. 

 

Interpretación: 

De acuerdo al criterio 011, referente al aprendizaje en la dimensión instrucción del algoritmo 

Naive Bayes establece que el 75.6% (68 encuestados) mencionan algunas veces, mientras que 

el 16.7% (15 encuestados) mencionan casi siempre y el 7.8% (7 encuestados) mencionan rara 

vez. 

 

Tabla 33 

P012: Aprendizaje logro del algoritmo Naive Bayes 

 Frecuencia Porcentaje 

Porcentaje 

válido 

Porcentaje 

acumulado 

Válido Rara vez 12 13.3 13.3 13.3 

Algunas veces 64 71.1 71.1 84.4 

Casi siempre 14 15.6 15.6 100.0 

Total 90 100.0 100.0  
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Figura 37 

P012: Aprendizaje logro del algoritmo Naive Bayes 

 

Nota: Distribución porcentual de la pregunta 012. 

 

Interpretación: 

De acuerdo al criterio 012, referente al aprendizaje en la dimensión logro del algoritmo 

Naive Bayes establece que el 13.3% (12 encuestados) mencionan rara vez, mientras que el 71.1% 

(64 encuestados) mencionan algunas veces y el 15.6% (14 encuestados) mencionan casi 

siempre. 

 

Tabla 34 

P013: Asertividad en la dimensión aptitud del algoritmo Naive Bayes 

 Frecuencia Porcentaje 

Porcentaje 

válido 

Porcentaje 

acumulado 

Válido Rara vez 12 13.3 13.3 13.3 

Algunas veces 50 55.6 55.6 68.9 

Casi siempre 28 31.1 31.1 100.0 

Total 90 100,0 100,0  

Nota: Elaboración propia a partir de SPSS versión 26.  
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Figura 38 

P013: Asertividad en la dimensión aptitud del algoritmo Naive Bayes 

 

Nota: Distribución porcentual de la pregunta 013. 

 

Interpretación: 

De acuerdo al criterio 013, de asertividad en la dimensión aptitud del algoritmo Naive Bayes 

establece que el 55.6% (50 encuestados) responde algunas veces, mientras que el 31.1% (28 

encuestados) responde casi siempre y el 13.3% (12 encuestados) responde rara vez. 

 

Tabla 35 

P014: Asertividad dimensión medio ambiente del algoritmo Naive Bayes 

 Frecuencia Porcentaje 

Porcentaje 

válido 

Porcentaje 

acumulado 

Válido Rara vez 16 17.8 17.8 17.8 

Algunas veces 58 64.4 64.4 82.2 

Casi siempre 16 17.8 17.8 100.0 

Total 90 100,0 100,0  

Nota: Elaboración propia a partir de SPSS versión 26.  
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Figura 39 

P014: Asertividad en la dimensión medio ambiente del algoritmo Naive Bayes 

 

Nota: Distribución porcentual de la pregunta 014. 

Interpretación: 

De acuerdo al criterio 014, de asertividad en la dimensión medio ambiente del algoritmo 

Naive Bayes establece que el 64.4% (58 encuestados) responde algunas veces, mientras que el 

17.8% (16 encuestados) responde rara vez y, casi siempre. 

 

Tabla 36 

P015: Asertividad dimensión instrucción del algoritmo Naive Bayes 

 Frecuencia Porcentaje 

Porcentaje 

válido 

Porcentaje 

acumulado 

Válido Rara vez 10 11.1 11.1 11.1 

Algunas veces 62 68.9 68.9 80.0 

Casi siempre 18 20.0 20.0 100.0 

Total 90 100,0 100,0  

Nota: Elaboración propia a partir de SPSS versión 26.  
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Figura 40 

P015: Asertividad dimensión instrucción del algoritmo Naive Bayes 

 

Nota: Distribución porcentual de la pregunta 015. 

 

Interpretación: 

De acuerdo al criterio 015, de asertividad en la dimensión instrucción del algoritmo Naive 

Bayes establece que el 68.9% (62 encuestados) responde algunas veces, mientras que el 20% 

(18 encuestados) responde casi siempre y 11.1% (10 encuestados) responde casi siempre. 

 

Tabla 37 

P016: Asertividad logro del algoritmo Naive Bayes 

 Frecuencia Porcentaje 

Porcentaje 

válido 

Porcentaje 

acumulado 

Válido Rara vez 12 13.3 13.3 13.3 

Algunas veces 64 71.1 71.1 84.4 

Casi siempre 14 15.6 15.6 100.0 

Total 90 100.0 100.0  

Nota: Elaboración propia a partir de SPSS versión 26.  
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Figura 41 

P016: Asertividad logro del algoritmo Naive Bayes 

 

Nota: Distribución porcentual de la pregunta 016. 

 

Interpretación: 

De acuerdo al criterio 016, referente a asertividad en la dimensión logro del algoritmo Naive 

Bayes establece que el 13.3% (12 encuestados) mencionan rara vez, mientras que el 71.1% (64 

encuestados) mencionan algunas veces y el 15.6% (14 encuestados) mencionan casi siempre. 

 

Tabla 38 

P017: Aprendizaje dimensión instrucción del algoritmo Random Forest 

 

Frecuencia Porcentaje 

Porcentaje 

válido 

Porcentaje 

acumulado 

Valido Rara vez 9 10.0 10.0 10.0 

Algunas veces 52 57.8 57.8 67.8 

Casi siempre 29 32.2 32.2 100.0 

Total 90 100,0 100,0  

Nota: Elaboración propia a partir de SPSS versión 26.  
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Figura 42 

P017: Aprendizaje dimensión instrucción del algoritmo Random Forest 

 

Nota: Distribución porcentual de la pregunta 017. 

 

Interpretación: 

De acuerdo al criterio 017, referente al aprendizaje en la dimensión instrucción del 

algoritmo Random Forest establece que el 57.8% (52 encuestados) responden algunas veces, 

mientras que el 32.2% (29 encuestados) responde casi siempre y el 10% (9 encuestados) 

mencionan rara vez. 

 

Tabla 39 

P018: Aprendizaje dimensión medio ambiente del algoritmo Random Forest 

 Frecuencia Porcentaje 

Porcentaj

e válido 

Porcentaje 

acumulado 

Válido Rara vez 15 16.7 16.7 16.7 

Algunas veces 62 68.9 68.9 85.6 

Casi siempre 13 14.4 14.4 100.0 

Total 90 100,0 100,0  

Nota: Elaboración propia a partir de SPSS versión 26.  
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Figura 43 

P018: Aprendizaje dimensión medio ambiente del algoritmo Random Forest 

 

Nota: Distribución porcentual de la pregunta 018. 

 

Interpretación: 

De acuerdo al criterio 018, referente al aprendizaje en la dimensión medio ambiente del 

algoritmo Random Forest establece que el 68.9% (62 encuestados) responde algunas veces, 

mientras que el 16.7% (15 encuestados) responde rar vez y el 14.4% (13 encuestados) responde 

casi siempre. 

 

Tabla 40 

P019: Aprendizaje dimensión instrucción del algoritmo Random Forest 

 Frecuencia Porcentaje 

Porcentaje 

válido 

Porcentaje 

acumulado 

Válido Rara vez 7 7.8 7.8 7.8 

Algunas veces 68 75.6 75.6 83.3 

Casi siempre 15 16.7 16.7 100.0 

Total 90 100,0 100,0  

Nota: Elaboración propia a partir de SPSS versión 26.  

 

Figura 44 

P019: Aprendizaje dimensión instrucción del algoritmo Random Forest 
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Nota: Distribución porcentual de la pregunta 019. 

 

Interpretación: 

De acuerdo al criterio 019, referente al aprendizaje en la dimensión instrucción del 

algoritmo Random Forest establece que el 75.6% (68 encuestados) responde algunas veces, 

mientras que el 16.7% (15 encuestados) responde casi siempre y el 7.8% (7 encuestados) 

responde rara vez. 

 

Tabla 41 

P020: Aprendizaje logro del algoritmo Random Forest 

 Frecuencia Porcentaje 

Porcentaje 

válido 

Porcentaje 

acumulado 

Válido Rara vez 12 13.3 13.3 13.3 

Algunas veces 64 71.1 71.1 84.4 

Casi siempre 14 15.6 15.6 100.0 

Total 90 100.0 100.0  

Nota: Elaboración propia a partir de SPSS versión 26.  
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Figura 45 

P020: Aprendizaje logro del algoritmo Random Forest 

 

Nota: Distribución porcentual de la pregunta 020. 

 

Interpretación: 

De acuerdo al criterio 020, referente a aprendizaje en la dimensión logro del algoritmo 

Random Forest establece que el 13.3% (12 encuestados) mencionan rara vez, mientras que el 

71.1% (64 encuestados) mencionan algunas veces y el 15.6% (14 encuestados) mencionan casi 

siempre. 

 

Tabla 42 

P021: Asertividad dimensión aptitud del algoritmo Random Forest 

 Frecuencia Porcentaje 

Porcentaje 

válido 

Porcentaje 

acumulado 

Válido Rara vez 8 8.9 8.9 8.9 

Algunas veces 53 58.9 58.9 67.8 

Casi siempre 29 32.2 32.2 100.0 

Total 90 100,0 100,0  

Nota: Elaboración propia a partir de SPSS versión 26.  

 

Figura 46 

P021: Asertividad dimensión aptitud del algoritmo Random Forest 
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Nota: Distribución porcentual de la pregunta 021. 

 

Interpretación: 

De acuerdo al criterio 021, de asertividad en la dimensión aptitud del algoritmo Random 

Forest establece que el 58.9% (53 encuestados) responde algunas veces, mientras que el 32.2% 

(29 encuestados) responde casi siempre y el 8.9% (8 encuestados) responde rara vez. 

 

Tabla 43 

P022: Asertividad dimensión medio ambiente del algoritmo Random Forest 

 Frecuencia Porcentaje 

Porcentaje 

válido 

Porcentaje 

acumulado 

Válido Rara vez 15 16.7 16.7 16.7 

Algunas veces 61 67.8 67.8 84.4 

Casi siempre 14 15.6 15.6 100.0 

Total 90 100,0 100,0  

Nota: Elaboración propia a partir de SPSS versión 26.  
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Figura 47 

P022: Asertividad dimensión medio ambiente del algoritmo Random Forest 

 

Nota: Distribución porcentual de la pregunta 022. 

 

Interpretación: 

De acuerdo al criterio 022, de asertividad en la dimensión medio ambiente del algoritmo 

Random Forest establece que el 67.8% (61 encuestados) responde algunas veces, mientras que 

el 16.7% (15 encuestados) responde rara vez y el 15.6% (14 encuestados) responde casi siempre. 

 

Tabla 44 

P023: Asertividad dimensión instrucción del algoritmo Random Forest 

 Frecuencia Porcentaje 

Porcentaje 

válido 

Porcentaje 

acumulado 

Válido Rara vez 9 10.0 10.0 10.0 

Algunas veces 66 73.3 73.3 83.3 

Casi siempre 15 16.7 16.7 100.0 

Total 90 100,0 100,0  

Nota: Elaboración propia a partir de SPSS versión 26.  
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Figura 48 

P023: Asertividad dimensión instrucción del algoritmo Random Forest 

 

Nota: Distribución porcentual de la pregunta 023. 

 

Interpretación: 

De acuerdo al criterio 023, de asertividad en la dimensión instrucción del algoritmo 

Random Forest establece que el 73.3% (66 encuestados) responde algunas veces, mientras que 

el 16.7% (15 encuestados) responde casi siempre y el 10% (9 encuestados) responde rara vez. 

 

Tabla 45 

P024: Asertividad logro del algoritmo Random Forest 

 Frecuencia Porcentaje 

Porcentaje 

válido 

Porcentaje 

acumulado 

Válido Rara vez 12 13.3 13.3 13.3 

Algunas veces 64 71.1 71.1 84.4 

Casi siempre 14 15.6 15.6 100.0 

Total 90 100.0 100.0  

Nota: Elaboración propia a partir de SPSS versión 26.  
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Figura 49 

P024: Asertividad logro del algoritmo Random Forest 

 

Nota: Distribución porcentual de la pregunta 024. 

 

Interpretación: 

De acuerdo al criterio 024, referente a la asertividad en la dimensión logro del algoritmo 

Random Forest establece que el 13.3% (12 encuestados) mencionan rara vez, mientras que el 

71.1% (64 encuestados) mencionan algunas veces y el 15.6% (14 encuestados) mencionan casi 

siempre. 

 

Tabla 46 

P025: Predicción 

 Frecuencia Porcentaje 

Porcentaje 

válido 

Porcentaje 

acumulado 

Válido Rara vez 10 11.1 11.1 11.1 

Algunas veces 53 58.9 58.9 70.0 

Casi siempre 24 26.7 26.7 96.7 

Siempre 3 3.3 3.3 100.0 

Total 90 100.0 100.0  

Nota: Elaboración propia a partir de SPSS versión 26.  
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Figura 50 

P025: Predicción 

 

Nota: Distribución porcentual de la pregunta 025. 

Interpretación: 

De acuerdo al criterio 025, referente a la predicción de los algoritmos de aprendizaje 

automático mencionan que el 11.1% (10 encuestados) mencionan rara vez, mientras el 58.9% 

(53 encuestados) mencionan algunas veces, el 26.7% (24 encuestados) mencionan casi siempre 

y el 3.3% (3 encuestados) mencionan siempre. 

 

Análisis inferencial 

Luego de realizar el análisis del descriptivo de las variables, procederemos a realizar el 

análisis inferencial que consiste en la prueba de normalidad y prueba de hipótesis planteadas 

en el presente trabajo de investigación. 

 

Prueba de normalidad 

Una herramienta estadística para determinar si un conjunto de datos tiene una distribución 

normal o gaussiana es la prueba de normalidad (Ghasemi y Zahediasl, 2012), para ello vamos 

a utilizar la prueba Kolmogorov-Smirnov (K-S), a fin de comprobar si los datos de la muestra 

proceden de una distribución normal en variables cuantitativas y cuyo tamaño de muestra 

poblacional sea mayor a 50 (Ghasemi y Zahediasl, 2012; Mishra et al., 2019). 
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Tabla 47 

Prueba de normalidad 

 

Kolmogorov-Smirnova 

Estadístico gl Sig. 

Productividad Educativa .113 90 .006 

Algoritmos de Aprendizaje 

Automático 

.143 90 .000 

a. Corrección de significación de Lilliefors 

Nota: Elaboración Propia con Software IBM SPSS versión 24 

 

 

Interpretación: 

Se observan en la tabla las pruebas de normalidad para las variables Productividad 

educativa y Algoritmos de Aprendizaje Automático no siguen una distribución normal, debido 

a que el p-valor es < α (0.05) para las dos variables, por lo tanto, utilizaremos pruebas no 

paramétricas; asimismo, al no pertenecer a una distribución normal se procesó con el Rho de 

Spearman 

 

Prueba no paramétrica con rho de Spemann 

Según Martínez Rebollar y Campos Francisco (2015), la prueba de Rho de Spearman es una 

prueba estadística no paramétrica que se utiliza para medir la asociación directa o inversa entre 

dos variables cuantitativas (monotónica), la interpretación de este tipo de prueba se basa en el 

valor de Rho de Spearman, que varía entre -1 y 1. 

 

Tabla 48 

Interpretación del coeficiente de correlación de Spearman 

Valor de Rho Significado 

-1 Correlación negativa grande y perfecta  

-0,9 a -0,99 Correlación negativa muy alta  

-0,7 a -0,89 Correlación negativa alta  

-0,4 a -0,69 Correlación negativa moderada  

-0,2 a -0,39 Correlación negativa baja  

-0,01 a -0,19 Correlación negativa muy baja  
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0 Correlación nula  

0,01 a 0,19 Correlación positiva muy baja  

0,2 a 0,39 Correlación positiva baja  

0,4 a 0,69 Correlación positiva moderada  

0,7 a 0,89 Correlación positiva alta 

0,9 a 0,99 Correlación positiva muy alta 

1 Correlación positiva grande y perfecta 

Nota: (Martínez Rebollar y Campos Francisco, 2015) 

 

Hipótesis general 

Hi: Existe relación significativa de la productividad educativa con los algoritmos de 

aprendizaje automático en estudiantes EPISI de UNAM, 2023. 

H0: No existe relación significativa de la productividad educativa con los algoritmos de 

aprendizaje automático en estudiantes EPISI de UNAM, 2023. 

 

Tabla 49 

Productividad Académica y Algoritmos de Aprendizaje Automático. 

 

Algoritmos de Aprendizaje 

Automático Total 

Insuficiente Aprobado Bueno 

Productividad 

Académica 

Insuficiente 
Recuento 12 0 0 12 

% del total 13.3% 0.0% 0.0% 13.3% 

Aprobado 
Recuento 0 64 0 64 

% del total 0.0% 71.1% 0.0% 71.1% 

Bueno 
Recuento 0 0 14 14 

% del total 0.0% 0.0% 15.6% 15.6% 

Total 
Recuento 12 64 14 90 

% del total 13.3% 71.1% 15.6% 100.0% 

Nota: Elaboración Propia con Software IBM SPSS versión 26 

Interpretación: 

El grado de relación existente entre las variables productividad educativa y los algoritmos 

de aprendizaje automático es 113.3% (12) Insuficiente, 71.1% (64) Aprobado y 15.6% (14) 

Bueno. 

 



130 

 

Tabla 50 

Prueba no paramétrica. Correlaciones Rho de Spearman entre Productividad Académica 

y Algoritmos de Aprendizaje Automático. 

 

Productividad 

Académica 

Algoritmos de 

Aprendizaje 

Automático 

Rho de 

Spearman 

Productividad 

Académica 

Coeficiente de correlación 1.000 .940** 

Sig. (bilateral) . .000 

N 90 90 

Algoritmos de 

Aprendizaje 

Automático 

Coeficiente de correlación .940** 1.000 

Sig. (bilateral) .000 . 

N 90 90 

**. La correlación es significativa en el nivel 0,01 (bilateral). 

Nota: Elaboración Propia con Software IBM SPSS versión 26 

 

Interpretación: 

El coeficiente de correlación de Spearman indica una correlación positiva muy alta, y la Rho 

de Spearman es 0,940. Además, dado que el nivel de significación es 0,000 < 0,05, es posible 

rechazar la hipótesis nula y aceptar la alternativa, lo que indica que las variables están 

relacionadas. Esto permite concluir que la productividad académica y los algoritmos de 

aprendizaje automático están significativamente correlacionados en la EPISI de la UNAM en 

2023. 

 

Hipótesis específicas 

Hipótesis especifica 1 

Hi: Existe relación significativa en la dimensión aptitud con los algoritmos de aprendizaje 

automático en estudiantes EPISI de UNAM, 2023. 

H0: No existe relación significativa en la dimensión aptitud con los algoritmos de 

aprendizaje automático en estudiantes EPISI de UNAM, 2023. 
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Tabla 51 

Aptitud y Algoritmos de Aprendizaje Automático. 

 
Algoritmos de Aprendizaje Automático Total 

Insuficiente Aprobado Bueno  

Aptitud 

Insuficiente 
Recuento 7 2 0 9 

% del total 7.8% 2.2% 0.0% 10.0% 

Aprobado 
Recuento 5 44 3 52 

% del total 5.6% 48.9% 3.3% 57.8% 

Bueno 
Recuento 0 18 11 29 

% del total 0.0% 20.0% 12.2% 32.2% 

Total 
Recuento 12 64 14 90 

% del total 13.3% 71.1% 15.6% 100.0% 

Nota: Elaboración Propia con Software IBM SPSS versión 26 

Interpretación: 

El nivel de relación que existe entre Aptitud y los algoritmos de aprendizaje automático es 

7.8% (7) Insuficiente, 48.9% (44) Aprobado y 12.2% (11) Bueno. 

 

Tabla 52 

Prueba no paramétrica. Correlaciones Rho de Spearman entre Aptitud y Algoritmos de 

Aprendizaje Automático. 

 

Aptitud 

Algoritmos de 

Aprendizaje 

Automático 

Rho de 

Spearman 

Aptitud Coeficiente de correlación 1.000 .801** 

Sig. (bilateral) . .000 

N 90 90 

Algoritmos 

de Aprendizaje 

Automático 

Coeficiente de correlación .801** 1.000 

Sig. (bilateral) .000 . 

N 90 90 

**. La correlación es significativa en el nivel 0,01 (bilateral). 

Nota: Elaboración Propia con Software IBM SPSS versión 26 

Interpretación: 
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Se acepta la hipótesis alternativa y se rechaza la hipótesis nula porque la Rho de Spearman 

es 0.801, lo que indica una alta correlación positiva por el coeficiente de correlación de 

Spearman, y porque el nivel de significancia es 0.000, que es menor a 0.05. Esto implica que 

los factores tienen una relación considerable, por lo que se concluye que en la EPISI de la 

UNAM en 2023, la aptitud está correlacionada significativamente con los métodos de 

aprendizaje automático. 

 

Hipótesis especifica 2 

Hi: Existe relación significativa en la dimensión instrucción con los algoritmos de 

aprendizaje automático en estudiantes EPISI de UNAM, 2023. 

H0: No existe relación significativa en la dimensión instrucción con los algoritmos de 

aprendizaje automático en estudiantes EPISI de UNAM, 2023. 

 

Tabla 53 

Instrucción y Algoritmos de Aprendizaje Automático. 

 

Algoritmos de Aprendizaje Automático Total 

Insuficiente Aprobado Bueno  

Instrucción 

Insuficiente Recuento 6 1 0 7 

% del total 6.7% 1.1% 0.0% 7.8% 

Aprobado Recuento 6 54 8 68 

% del total 6.7% 60.0% 8.9% 75.6% 

Bueno Recuento 0 9 6 15 

% del total 0.0% 10.0% 6.7% 16.7% 

Total Recuento 12 64 14 90 

% del total 13.3% 71.1% 15.6% 100.0% 

Nota: Elaboración Propia con Software IBM SPSS versión 26 

 

 

Interpretación: 

El nivel de relación que existe entre Instrucción y los algoritmos de aprendizaje automático 

es 6.7% (6) Insuficiente, 60% (54) Aprobado y 8.9% (8) Bueno. 
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Tabla 54 

Prueba no paramétrica. Correlaciones Rho de Spearman entre Instrucción y Algoritmos 

de Aprendizaje Automático. 

 Instrucción 

Algoritmos de 

Aprendizaje 

Automático 

Rho de 

Spearman 

Instrucción Coeficiente de correlación 1.000 .723** 

Sig. (bilateral) . .000 

N 90 90 

Algoritmos de 

Aprendizaje 

Automático 

Coeficiente de correlación .723** 1.000 

Sig. (bilateral) .000 . 

N 90 90 

**. La correlación es significativa en el nivel 0,01 (bilateral). 

Nota: Elaboración Propia con Software IBM SPSS versión 26 

Interpretación: 

El valor del coeficiente de correlación de Spearman indica una fuerte asociación positiva, 

con un Rho de Spearman de 0,723. Además, se acepta la hipótesis alternativa y se rechaza la 

hipótesis nula porque el nivel de significación es 0.000, que es menor que 0.05. Esto muestra 

que las variables tienen una asociación significativa, lo que indica que en la EPISI de la UNAM 

en 2023, la instrucción tiene una relación significativa con los algoritmos de aprendizaje 

automático. 

 

Hipótesis especifica 3 

Hi: Existe relación significativa en la dimensión medio ambiente con los algoritmos de 

aprendizaje automático en estudiantes EPISI de UNAM, 2023. 

H0: No existe relación significativa en la dimensión medio ambiente con los algoritmos de 

aprendizaje automático en estudiantes EPISI de UNAM, 2023. 

 

Tabla 55 

Medio ambiente y algoritmos de aprendizaje automático. 

 

Algoritmos de Aprendizaje 

Automático 
Total 

Insuficiente Aprobado Bueno  
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Medio 

Ambiente 

Insuficiente Recuento 7 8 0 15 

% del total 7.8% 8.9% 0.0% 16.7% 

Aprobado Recuento 5 53 4 62 

% del total 5.6% 58.9% 4.4% 68.9% 

Bueno Recuento 0 3 10 13 

% del total 0.0% 3.3% 11.1% 14.4% 

Total Recuento 12 64 14 90 

% del total 13.3% 71.1% 15.6% 100.0

% 

Nota: Elaboración Propia con Software IBM SPSS versión 26 

Interpretación: 

El nivel de relación que existe entre Medio ambiente y los algoritmos de aprendizaje 

automático es 7.8% (7) Insuficiente, 58.9% (53) Aprobado y 11.1% (10) Bueno. 

 

Tabla 56 

Prueba no paramétrica. correlaciones rho de Spearman entre medio ambiente y 

algoritmos de aprendizaje automático. 

 

Medio 

Ambiente 

Algoritmos de 

Aprendizaje 

Automático 

Rho de 

Spearman 

Medio 

Ambiente 

Coeficiente de correlación 1.000 .626** 

Sig. (bilateral) . .000 

N 90 90 

Algoritmos de 

Aprendizaje 

Automático 

Coeficiente de correlación .626** 1.000 

Sig. (bilateral) .000 . 

N 90 90 

**. La correlación es significativa en el nivel 0,01 (bilateral). 

Nota: Elaboración Propia con Software IBM SPSS versión 26 

 

Interpretación: 

La correlación moderadamente positiva entre las variables viene indicada por el coeficiente 

de correlación de Spearman (Rho), que se sitúa en 0,626. Además, dado que el nivel de 

significancia es de 0.000, es decir, menor a 0.05, se acepta la hipótesis alternativa y se rechaza 
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la hipótesis nula. Esto indica que, en el EPISI de la UNAM en 2023, habrá una interacción 

sustancial entre el entorno y los algoritmos de aprendizaje automático. 

 

Hipótesis especifica 4 

Hi: Existe relación significativa en la dimensión aprendizaje con los algoritmos de 

aprendizaje automático en estudiantes EPISI de UNAM, 2023. 

H0: No existe relación significativa en la dimensión aprendizaje con los algoritmos de 

aprendizaje automático en estudiantes EPISI de UNAM, 2023. 

 

Tabla 57 

Aprendizaje y Algoritmos de Aprendizaje Automático. 

 

Algoritmos de Aprendizaje Automático 

Total Insuficiente Aprobado Bueno 

Aprendizaje 

Insuficiente Recuento 12 0 0 12 

% del total 13.3% 0.0% 0.0% 13.3% 

Aprobado Recuento 0 64 0 64 

% del total 0.0% 71.1% 0.0% 71.1% 

Bueno Recuento 0 0 14 14 

% del total 0.0% 0.0% 15.6% 15.6% 

Total Recuento 12 64 14 90 

% del total 13.3% 71.1% 15.6% 100.0% 

Nota: Elaboración Propia con Software IBM SPSS versión 26 

Interpretación: 

El nivel de relación que existe entre aprendizaje y los algoritmos de aprendizaje automático 

es 13,3% (12) Insuficiente, 71,1% (64) Aprobado y 15,6% (14) Bueno. 

 

Tabla 58 

Aprendizaje y Algoritmos de Aprendizaje Automático. 

 Aprendizaje 

Algoritmos de 

Aprendizaje 

Automático 

Rho de 

Spearman 

Aprendizaje Coeficiente de correlación 1.000 .811** 

Sig. (bilateral) . .000 
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N 90 90 

Algoritmos de 

Aprendizaje 

Automático 

Coeficiente de correlación .811** 1.000 

Sig. (bilateral) .000 . 

N 90 90 

**. La correlación es significativa en el nivel 0,01 (bilateral). 

Nota: Elaboración Propia con Software IBM SPSS versión 26 

Interpretación: 

Con un coeficiente de correlación de Spearman (Rho) de 0,811, las variables muestran una 

fuerte asociación positiva entre sí. Además, dado que el nivel de significación es de 0.000, es 

decir, menor a 0.05, se acepta la hipótesis alternativa y se rechaza la hipótesis nula. Esto indica 

que, en el EPISI de la UNAM en 2023, los algoritmos de aprendizaje y aprendizaje automático 

tendrán una relación sustancial. 

 

Discusión de resultados 

En la actualidad, la educación superior se enfrenta a múltiples desafíos, entre ellos, la 

necesidad de mejorar la productividad educativa y la calidad de la formación de los estudiantes. 

En este sentido, la implementación de algoritmos de aprendizaje automático (AA) ha sido 

propuesta como una solución para optimizar el proceso de enseñanza y aprendizaje en la 

Escuela Profesional de Ingeniería de Sistemas e Informática de la Universidad Nacional de 

Moquegua. En este estudio, se evaluó la efectividad de la implementación de AA en la 

productividad educativa de la escuela, es por ello que la presente investigación consiste en 

determinar el nivel de relación entre la productividad educativa y los algoritmos de aprendizaje 

automático en la Universidad Nacional de Moquegua, 2023; con la prueba no paramétrica Rho 

de Spearman se descubrió un valor inferior a 0,05, es decir, un nivel de significación de 0,000. 

Esto sugiere que las variables tienen una asociación positiva muy fuerte entre sí. Esto sugiere 

que las variables tienen una asociación positiva muy fuerte entre sí. Por ejemplo, según los 

datos de 90 estudiantes evaluados en el EPISI de la UNAM, es probable que los elementos de 

aptitud, entorno e instrucción del constructo de productividad educativa estén 

significativamente conectados. en donde el 7.8% representado por 7 encuestados estableció 

insuficiente, el 48.9% representado por 44 encuestados estableció aprobado y el 12.2% 

representado por 11 encuestados estableció bueno, frente a ello se rechazó la hipótesis nula y 

aceptando la hipótesis planteada en la investigación referente a la existencia relacional entre la 

productividad educativa y los algoritmos de aprendizaje automático en EPISI de UNAM, 2023. 
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Los resultados mencionados confirman la investigación realizada por  Parhizkar et al., 

(2023), denominada “Predicción del desempeño de los estudiantes utilizando algoritmos de 

clasificación de minería de datos: evaluación de la generalización de modelos desde el aspecto 

geográfico” Irán, en donde mostró un correlación positiva alta debido a que los algoritmos de 

aprendizaje automático Random forest y redes neuronales convolucionales (CNN) mostraron 

mejores rendimientos con un promedio de precisión y una puntuación F de 73,5 y 68,5, 

respectivamente. 

La presente investigación corrobora el estudio "Algoritmos de aprendizaje automático para 

la predicción del rendimiento académico" de Morales Hernández et al. (2022) realizado en 

escuelas del estado mexicano de Tlaxcala, en donde se desarrollaron dos clasificadores de AA: 

el modelo de gradient boosting (GB) y la red neuronal multicapa (también conocida como 

perceptrón multicapa o MLP, por sus siglas en inglés). El objetivo fue predecir el nivel de 

productividad académica en las áreas de matemáticas y español. Los resultados demostraron 

que el clasificador MLP superó al modelo GB en términos de precisión de clasificación general 

(PG) para la asignatura de español, alcanzando un 70,1% en 2008 y un 61,1% en 2011. Sin 

embargo, el modelo GB obtuvo mejores resultados en la asignatura de matemáticas, con una 

PG del 68,8% en 2008 y del 63,5% en 2011. Estos resultados implican que existe una 

correlación significativa entre el nivel de rendimiento académico en matemáticas y el 

rendimiento en español. 

Asimismo corrobora la investigación realizada por Yağcı (2022), en su modelo de estudio 

denominado Minería de datos educativos: predicción de la productividad académica de los 

estudiantes de una universidad estatal turca mediante algoritmos de aprendizaje automático, 

en donde propone predecir calificaciones de los exámenes finales de los estudiantes de 

pregrado, en donde referencia las calificaciones de las evaluaciones parciales para dicho 

estudio, asimismo utiliza algoritmos ML Random Forest, Vecinos más Cercanos, Regresión 

Logística, Naive Bayes y algoritmos de k-vecino más cercano para dicha investigación, cuyo 

resultado del modelo propuesto logró una precisión de clasificación del 70% al 75% de relación 

efectiva positiva. 

También lo confirma la investigación realizada por Gismondi (2021) titulado “Modelo 

predictivo basado en machine learning como soporte para el seguimiento académico del 

estudiante universitario”, cuya finalidad fue mejorar los resultados en la educación 

universitaria, proponiendo aplicar la inteligencia artificial, machine learning y Deep learning a 

través de una red neuronal de seis capas con un 98.97% de precisión en el entrenamiento y 



138 

 

81.73 de precisión en el conjunto de prueba, estableciendo  de relación efectiva positiva muy 

alta. 

De la misma manera el estudio realizado por Quiñones y Quiñones (2020)"Rendimiento 

académico mediante minería de datos" consistió en utilizar técnicas de minería de datos para 

predecir el rendimiento académico de los alumnos matriculados en la carrera de Ingeniería en 

Industrias Alimentarias de la Universidad Nacional de Jaén (UNJ). Las oficinas de la 

universidad y un fichero proporcionaron acceso a la base de datos. CRISP-DM fue la 

metodología empleada. Los tres algoritmos de categorización del software Weka produjeron 

predicciones con una fiabilidad superior al 83%. 

 

Conclusiones 

1. Conforme al objetivo general en determinar el nivel de relación entre la productividad 

educativa y los algoritmos de aprendizaje automático, se determinó estadísticamente que 

existe una correlación positiva muy alta, debido al valor del coeficiente de correlación de 

Spearman que fue de 0,940 y conforme al baremo de significancia del valor hallado; Por 

tanto, se destaca que los algoritmos de aprendizaje automático (arboles de decisión, 

random fores y naive bayes) demostraron un alto grado de precisión en la predicción de la 

productividad educativa respaldado por el Rho de Spearman. 

2. En cuanto al objetivo específico referente al nivel de relación entre la dimensión aptitud y 

los algoritmos de aprendizaje automático, se determinó estadísticamente que existe una 

correlación positiva alta debido al valor del coeficiente de correlación de Spearman que fue 

de 0,801 y el baremo de significancia del valor hallado. 

3. En relación al objetivo específico del nivel de relación entre la dimensión instrucción y los 

algoritmos de aprendizaje automático, se estableció estadísticamente una correlación 

positiva alta debido al valor del coeficiente de correlación de Spearman que fue de 0,723 y 

el baremo de significancia del valor hallado. 

4. En cuanto al objetivo específico concerniente al nivel de relación entre la dimensión medio 

ambiente y los algoritmos de aprendizaje automático, se especificó estadísticamente una 

correlación positiva moderada debido al valor del coeficiente de correlación de Spearman 

que fue de 0,626 y el baremo de significancia del valor hallado. 

5. Respecto al objetivo específico del nivel de relación entre la dimensión aprendizaje y los 

algoritmos de aprendizaje automático, se analizó estadísticamente en donde se determinó 

el coeficiente de correlación de Spearman en 0,811 y de acuerdo al baremo de significancia 

se estableció una correlación positiva alta.  
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Recomendaciones 

1. La recomendación en el ámbito general recae en promover la implementación y uso de 

algoritmos de aprendizaje automático en el ámbito educativo de EPISI de UNAM, con el 

objetivo de mejorar la productividad educativa, debido a la alta correlación positiva 

existente entre dichas variables. Además, recomendar a la vice presidencia académica, 

decano de ingeniería, jefe de departamento y dirección de EPISI de UNAM brindar el apoyo 

correspondiente en la asignación de recursos y capacitaciones tanto a estudiantes, docentes 

y personal involucrado fortaleciendo de esta forma habilidades en el uso y comprensión de 

los algoritmos de aprendizaje automático (AAA), con la finalidad de lograr mejores niveles 

de confianza en los AAA, integrar a los sistemas automatizados existentes para una mejor 

gestión educativa. 

2. Con referencia a la dimensión aptitud y los algoritmos de aprendizaje automático, se 

encontró una correlación positiva alta, por tanto, se recomienda continuar con el 

fortalecimiento de los datos a fin de mejorar el rendimiento predictivo de los AAA, esto 

significa incrementar la data historia personalizada, para ello se sugiere a los directivos y 

autoridades mencionados asignar recursos y capacitaciones a EPISI basado en 

especialización en inteligencia artificial y Big Data a fin de lograr establecer estrategias y 

políticas de almacenamiento de datos del modelo inteligente en los servidores de UNAM, 

para una mejor gestión académica. 

3. Respecto a la dimensión instrucción y los algoritmos de aprendizaje automático se obtuvo 

una correlación alta para lo cual también recomienda ampliar los datos históricos con la 

finalidad de mejorar las predicciones de los AAA para ello se sugiere a los directivos y 

autoridades mencionados asignar recursos y capacitaciones a EPISI basado en 

especialización en inteligencia artificial y Big Data a fin de lograr establecer estrategias y 

políticas de almacenamiento de datos del modelo inteligente en los servidores de UNAM, 

para una mejor gestión académica. 

4. Respecto a la dimensión medio ambiente y los algoritmos de aprendizaje automático se 

obtuvo una correlación positiva moderada para lo cual se recomienda mejorar la 

ampliación de los datos históricos a fin de mejorar las predicciones de los algoritmos de 

aprendizaje automático para ello se sugiere a los directivos y autoridades mencionados 

asignar recursos y capacitaciones en Inteligencia artificial y Big Data a fin de establecer 

estrategias de almacenamiento de datos en los servidores de UNAM, para una mejor 

gestión académica. 
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5. Respecto a la dimensión aprendizaje y los algoritmos de aprendizaje automático se obtuvo 

una correlación positiva alta para lo cual se recomienda mejorar la ampliación de los datos 

históricos a fin de mejorar las predicciones de los algoritmos de aprendizaje automático 

para ello se sugiere a los directivos y autoridades mencionados asignar recursos y 

capacitaciones en Inteligencia artificial y Big Data a fin de establecer estrategias de 

almacenamiento de datos en los servidores de UNAM, para una mejor gestión académica. 
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